data proces s ing techniques
play

Data Proces s ing Techniques Seminar Sensor Nodes Operation Modes, - PowerPoint PPT Presentation

Data Proces s ing Techniques Seminar Sensor Nodes Operation Modes, Networks and Applications SS 2012 Martin Waltl 24.07.2012 M 2 a r ti n Agenda W a lt l What are data processing techniques? - D PermaSense project a t


  1. Data Proces s ing Techniques Seminar Sensor Nodes Operation Modes, Networks and Applications SS 2012 Martin Waltl 24.07.2012

  2. M 2 a r ti n Agenda W a lt • l What are data processing techniques? - D • PermaSense project a t • Multi-hop communication a P • Model-based approach for temporal reconstruction r o • Conclusion c e s s i n g T e

  3. 3 M a r ti n Why do we need data proces s ing techniques (DPT)? W a lt l - D a t WSN Science Data sink a P • Problems: Duplicates, Packet loss, Unordered arrival, clock drifts r o Reas ons • Solutions: 1. Improve WSN c • Data can be used directly e • High complexity and costs s 2. Post Data Processing s • Requires formal model i n g T e

  4. 4 M a r ti n Different approaches for DPT W a • lt Establish a global time base within the WSN  global l synchronization (Flooding Time Synchronization Protocol - FTSP) - [6] D a • Post data processing based on domain specific knowledge [10] t – Microseismics measurements [8] a – Sun light measurements [9] P r o c e • Model-based approach to reconstruct the temporal order of s packets using packet header information [1] s i n g T e

  5. M 5 a r ti n Steps in data proces s ing W a lt l - D a t WSN Science DPT Data sink a Recons truct temporal packet order P r Data Processing T echnique o c e s s i n [1] M. Keller, L. Thiele, and J. Beutel. Reconstruction of the correct temporal order of sensor network data. In Information Processing in Sensor Networks (IPSN), 2011 10th International Conference on, pages 282 - 293, April g 2011 T e

  6. 6 M a r ti n PermaSens e project W a lt WSN in high-mountain area • Prototype for deployment in harsh environments • l Goal : Observe permafrost changes in the Swiss Alps • - Challenges : snow cover, lightning strokes, rock falls, • temperature variations [-40°C,60°C], high altitude D Requirements : a • 1. Precision Sensing 2. Reliability in harsh environment t 3. Durability and energy constraints a P r o c e s s i n g T e

  7. 7 M a r ti n WSN deployment at the Matterhorn (3450m) W a • lt 25 nodes l • Spacing 10- - 150m D a t a P r o c e s s i http://www.permasense.ch/uploads/pics/2011jf001981-op01.jpg n g T e

  8. 8 M a r ti n Sens or nodes W a lt • Components – Shockfish TinyNode l – Sensor Interface Board (SIB) - – 6 sensors – connected to SIB D – 1GB SD card – local storage a – Li-SOCl2 battery t a Sensor node1 • Power consumption P – Ultra low-power Dozer protocol r – Average power consumption o 148µA c – ~ 3 years of operation e s s i (1)http://www.permasense.ch/uploads/RTEmagicC_permabox_exploded.jpg.jpg Deployment at site2 n (2)http://www.permasense.ch/uploads/RTEmagicC_rod_sketch.jpg.jpg g T e

  9. 9 M a r ti n Multi-hop communication (Dozer) W a • Dozer multi-hop communication protocol designed for WSN lt • Optimized for low-power consumption of sensor nodes l - • Tree management (dynamic topology) D • Periodic duty cycle: Sensing | Transmission | Sleep a t a P • Communication artefacts r – Unordered arrival o – Duplicate generation c – Data loss e s s i T ree architecture n g T e

  10. M 10 a r ti n Dozer – Trans mis s ion bas ed on TDMA mechanis m W a lt • Transmission is based on a periodic TDMA frame l • Beacon (B) is used for local s ynchronization - • Contention Window - acceptance of children D • Children are assigned to one time slot a • t Communication failure a P r o c e s s i Periodic TDMA frame format in Dozer n g T e

  11. M 11 a r ti n Dozer – Communication example W a • lt T extmasterformat bearbeiten l – Zweite Ebene • - Dritte Ebene – Vierte Ebene D » Fünfte Ebene a t a P r o c e s s i [7] Figure 3 n g T e

  12. 12 M a r ti n Wrap up W a Filtered lt Data l - D a t WSN Science Data sink DPT a P • Our goal: Reconstruct temporal order of packets r o • What we know: c – WSN architecture e – Transmission via multi-hop communication s • Next steps: s 1. Specify a system model to describe the data acquisition and transmission i process n 2. Develop a formal model to reconstruct temporal packet order g T e

  13. M 13 a r ti n Sys tem model W a • lt Formal model of a sensor network l – Tree architecture – - Multi-hop communication – No global synchronization D • Sink has an absolute clock and does not suffer from restarts a • t Nodes suffer from local clock drifts and restarts a – Warm restarts  reset time – Cold restarts  resets time, sequence counter and message queue P (data los s !!) r o • c Packet = (o, s, p, ts~, tb) e – o – sensor node I – s – sequence number  (s + 1) mod smax s – p – payload s – ts~ – estimated sojourn time i – tb – absolute arrival time a the sink node n g T e

  14. M 14 a r ti n Model-bas ed approach W a lt l - D a t a P r o • Goal : Reconstruct temporal packet order and enhance c data quality e • Only performed on header information (no sensor data) s – Sequence number s – Arrival time stamp (tb) at sink i – System model n g T e

  15. 15 M a r ti n Step 1: Es timation of packet generation time W a lt l - D a t a P r o c e s s i n g T e

  16. 16 M a r ti n Step 2: Duplicate filtering W a lt l - D a t a P r o c e s s i G = (V,E) n g T e

  17. 17 M a r ti n Step 3: Epoch as s ignment – What is an epoch? W a lt l - D a t a P r o c e s s i n [1] Figure 3 g T e

  18. 18 M a r ti n Step 3: Epoch as s ignment - Algorithm W a lt l - D a t a P r o c e s s i n g T e

  19. 19 M a r ti n Step 4: Forward / Backward reas oning W a lt l - D a Forward reasoning Backward reasoning t a P r o c e s s i n g T e

  20. M 20 a r ti n Evaluation and performance W a • lt Case study using data from the PermaSense project l – 3 deployment phases - – Ground truth data from SD card of sensor nodes (reference) D a • Metrics: t – Packet acceptance rate a – Correctness of the derived packet sequence P – Improvement of generation time intervals r o c • Results e • Comparison to simple heuristics s • High packet acceptance rate for model-based approach s • Delivered correct temporal packet order i • Generation time intervals reduced by 90%  from 100s – 2.6s n g T e

  21. 21 M a r ti n Conclus ion W a • lt Reconstruction of temporal order requires a formal system model l – What is the architecture? - – How is the data transmitted within the network? D + Reduce complexity of WSN  cheaper sensor nodes a + Enhance system life time t − Model formulation is complex and never correct  simplification a P r Data Processing T echnique o c e s s i n g T e

  22. Thanks for your attentation! Ques tions ?

  23. M 23 a r ti n PermaDAQ architecture W a • T extmasterformat bearbeiten lt – Zweite Ebene l • Dritte Ebene - – Vierte Ebene D » Fünfte Ebene a t a P r o c e s http://www.permasense.ch/typo3temp/pics/2cab5fb s 804.png • Live-Data Viewer: http://data.permasense.ch/ i • Sensor nodes position: n http://www.permasense.ch/de/data/permasense-data.html g T e

  24. Backup s lides

  25. 25 M a r ti n References (1) W a lt [1] M. Keller, L. Thiele, and J. Beutel. Reconstruction of the correct temporal order of sensor network data. In Information Processing in Sensor Networks l (IPSN), 2011 10th International Conference on, pages 282 - 293, April 2011 - [2] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. T alzi, L. Thiele, D C. T schudin, M. Woehrle,and M. Yuecel. PermaDAQ: A scientific instrument for a precision sensing and data recovery in environmentalextremes. In t Information Processing in Sensor Networks, 2009. IPSN 2009. International a Conference on, pages 265 { 276, April 2009 P [3] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and r yield in a volcano monitoring sensor network. In Proceedings of the 7th o symposium on Operating systems design and implementation, OSDI '06, c pages 381{396, Berkeley, CA, USA, 2006. USENIX Association e [4] G. Barrenetxea, F . Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and M. Parlange. 2008. SensorScope: Out-of-the-Box Environmental Monitoring. In s s Proceedings of the 7th international conference on Information processing in sensor networks (IPSN '08). IEEE Computer Society, Washington, DC, USA, 332-343. i n g T e

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend