continuous distributions
play

Continuous Distributions 1.8-1.9: Continuous Random Variables - PowerPoint PPT Presentation

Continuous Distributions 1.8-1.9: Continuous Random Variables 1.10.1: Uniform Distribution (Continuous) 1.10.4-5 Exponential and Gamma Distributions: Distance between crossovers Prof. Tesler Math 283 Fall 2019 Prof. Tesler Continuous


  1. Continuous Distributions 1.8-1.9: Continuous Random Variables 1.10.1: Uniform Distribution (Continuous) 1.10.4-5 Exponential and Gamma Distributions: Distance between crossovers Prof. Tesler Math 283 Fall 2019 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 1 / 33

  2. Cumulative Distribution Function (CDF) Prof. Tesler Continuous Distributions Math 283 / Fall 2019 2 / 33

  3. Cumulative Distribution Function (CDF) Discrete random variables The Cumulative Distribution Function (CDF) of PDF random variable X is P X ( k ) k F X ( x ) = P ( X � x ) 0 . 5 0 . 1 1 . 0 0 . 2 F X ( 1 . 5 ) = P ( X � 1 . 5 ) = P X ( 0 . 5 ) + P X ( 1 . 0 ) + P X ( 1 . 5 ) 1 . 5 0 . 3 = 0 . 1 + 0 . 2 + 0 . 3 = 0 . 6 2 . 0 0 . 1 2 . 5 0 . 1 3 . 0 0 . 2 In-between points with nonzero probability: F X ( 1 . 7 ) = P ( X � 1 . 7 ) = P ( X � 1 . 5 ) = F X ( 1 . 5 ) = 0 . 6 whereas the PDF there is 0 : P X ( 1 . 7 ) = 0 Similarly, F X ( k ) = F X ( 1 . 5 ) = 0 . 6 for 1 . 5 � k < 2 . 0 . Prof. Tesler Continuous Distributions Math 283 / Fall 2019 3 / 33

  4. CDF outside of the range PDF P X ( k ) k 0 . 5 0 . 1 1 . 0 0 . 2 1 . 5 0 . 3 2 . 0 0 . 1 2 . 5 0 . 1 3 . 0 0 . 2 F X (− 1 ) = P ( X � − 1 ) = 0 (no points w/nonzero PDF) F X ( 5 ) = P ( X � 5 ) = 1 (has all of the points w/nonzero PDF) General case k → − ∞ F X ( k ) = 0 lim k → + ∞ F X ( k ) = 1 lim Prof. Tesler Continuous Distributions Math 283 / Fall 2019 4 / 33

  5. CDF table PDF CDF P X ( k ) F X ( k ) k k k < 0 . 5 0 0 . 5 0 . 1 0 . 5 � k < 1 . 0 0 . 1 1 . 0 0 . 2 1 . 0 � k < 1 . 5 0 . 3 1 . 5 0 . 3 1 . 5 � k < 2 . 0 0 . 6 2 . 0 0 . 1 2 . 0 � k < 2 . 5 0 . 7 2 . 5 0 . 1 2 . 5 � k < 3 . 0 0 . 8 3 . 0 0 . 2 3 . 0 � k 1 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 5 / 33

  6. Using CDF table with various inequalities: � , > , < , � PDF CDF P X ( k ) F X ( k ) k k k < 0 . 5 0 0 . 5 0 . 1 0 . 5 � k < 1 . 0 0 . 1 1 . 0 0 . 2 1 . 0 � k < 1 . 5 0 . 3 1 . 5 0 . 3 1 . 5 � k < 2 . 0 0 . 6 2 . 0 0 . 1 2 . 0 � k < 2 . 5 0 . 7 2 . 5 0 . 1 2 . 5 � k < 3 . 0 0 . 8 3 . 0 0 . 2 3 . 0 � k 1 P ( X � 1 ) = 0 . 3 P ( X > 1 ) = 1 − P ( X � 1 ) = 0 . 7 P ( X < 1 ) = P ( X � 1 − ) = F X ( 1 − ) = 0 . 1 using infinitesimal notation from Calculus: 1 − is just below 1 , like 0 . 99999999 , but even closer. P ( X � 1 ) = 1 − P ( X < 1 ) = 1 − F X ( 1 − ) = 0 . 9 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 6 / 33

  7. Using CDF table on an interval PDF CDF P X ( k ) F X ( k ) k k k < 0 . 5 0 0 . 5 0 . 1 0 . 5 � k < 1 . 0 0 . 1 1 . 0 0 . 2 1 . 0 � k < 1 . 5 0 . 3 1 . 5 0 . 3 1 . 5 � k < 2 . 0 0 . 6 2 . 0 0 . 1 2 . 0 � k < 2 . 5 0 . 7 2 . 5 0 . 1 2 . 5 � k < 3 . 0 0 . 8 3 . 0 0 . 2 3 . 0 � k 1 F X ( 2 ) = P ( X � 2 ) = P X ( 0 . 5 ) + P X ( 1 . 0 ) + P X ( 1 . 5 ) + P X ( 2 . 0 ) F X ( 1 ) = P ( X � 1 ) = P X ( 0 . 5 ) + P X ( 1 . 0 ) P ( 1 < X � 2 ) = P X ( 1 . 5 ) + P X ( 2 . 0 ) = P ( X � 2 ) − P ( X � 1 ) = F X ( 2 ) − F X ( 1 ) = 0 . 7 − 0 . 3 = 0 . 4 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 7 / 33

  8. Converting intervals to the form P ( a < X � b ) PDF CDF P X ( k ) F X ( k ) k k k < 0 . 5 0 0 . 5 0 . 1 0 . 5 � k < 1 . 0 0 . 1 1 . 0 0 . 2 1 . 0 � k < 1 . 5 0 . 3 1 . 5 0 . 3 1 . 5 � k < 2 . 0 0 . 6 2 . 0 0 . 1 2 . 0 � k < 2 . 5 0 . 7 2 . 5 0 . 1 2 . 5 � k < 3 . 0 0 . 8 3 . 0 0 . 2 3 . 0 � k 1 The formula P ( a < X � b ) = F X ( b ) − F X ( a ) uses a < X (not a � X ) and X � b (not X < b ). Other formats must be converted to this: P ( 1 < X � 2 ) = F X ( 2 ) − F X ( 1 ) = 0 . 7 − 0 . 3 = 0 . 4 P ( 1 � X � 2 ) = P ( 1 − < X � 2 ) = F X ( 2 ) − F X ( 1 − ) = 0 . 7 − 0 . 1 = 0 . 6 P ( 1 < X < 2 ) = P ( 1 < X � 2 − ) = F X ( 2 − ) − F X ( 1 ) = 0 . 6 − 0 . 3 = 0 . 3 P ( 1 � X < 2 ) = P ( 1 − < X � 2 − ) = F X ( 2 − ) − F X ( 1 − ) = 0 . 6 − 0 . 1 = 0 . 5 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 8 / 33

  9. Continuous distributions Prof. Tesler Continuous Distributions Math 283 / Fall 2019 9 / 33

  10. Continuous distributions Example Pick a real number x between 20 and 30 with all real values in [ 20 , 30 ] equally likely. Sample space: S = [ 20 , 30 ] Number of outcomes: | S | = ∞ Probability of each outcome: P ( X = x ) = 1 ∞ = 0 Yet, P ( X � 21 . 5 ) = 15 % Prof. Tesler Continuous Distributions Math 283 / Fall 2019 10 / 33

  11. Continuous distributions The sample space S is often a subset of R n . We’ll do the 1-dimensional case S ⊂ R . The probability density function (PDF) f X ( x ) is defined differently than the discrete case: f X ( x ) is a real-valued function on S with f X ( x ) � 0 for all x ∈ S . � (vs. � f X ( x ) dx = 1 P X ( x ) = 1 for discrete) x ∈ S S � (vs. � The probability of event A ⊂ S is P ( A ) = f X ( x ) dx P X ( x ) ). x ∈ A A In n dimensions, use n -dimensional integrals instead. Notation: Uppercase F for CDF vs. lowercase f for pdf. Uniform distribution Let a < b be real numbers. The Uniform Distribution on [ a , b ] is that all numbers in [ a , b ] are “equally likely.” � 1 if a � x � b ; b − a More precisely, f X ( x ) = otherwise. 0 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 11 / 33

  12. Uniform distribution (real case) The uniform distribution on [ 20 , 30 ] We could regard the sample space as [ 20 , 30 ] , or as all reals. 0.10 f X ( x ) � for 20 � x � 30 ; 1 / 10 f X ( x ) = 0.00 otherwise. 0 0 10 20 30 40 x � 20 � 21 . 5 21 . 5 10 dx = 0 + x 1 � P ( X � 21 . 5 ) = 0 dx + � 10 � 20 − ∞ 20 = 21 . 5 − 20 0.10 10 f X ( x ) = . 15 = 15 % 0.00 0 10 20 30 40 x Prof. Tesler Continuous Distributions Math 283 / Fall 2019 12 / 33

  13. Cumulative distribution function (CDF) The Cumulative Distribution Function (CDF) of a random variable X is F X ( x ) = P ( X � x ) For a continuous random variable, � x ′ ( x ) F X ( x ) = P ( X � x ) = − ∞ f X ( t ) dt and f X ( x ) = F X The integral cannot have “ x ” as the name of the variable in both of F X ( x ) and f X ( x ) because one is the upper limit of the integral and the other is the integration variable. So we use two variables x , t . We can either write � x F X ( x ) = P ( X � x ) = f X ( t ) dt − ∞ or � t F X ( t ) = P ( X � t ) = f X ( x ) dx − ∞ Prof. Tesler Continuous Distributions Math 283 / Fall 2019 13 / 33

  14. CDF of uniform distribution Uniform distribution on [ 20 , 30 ] � x For x < 20 : F X ( x ) = − ∞ 0 dt = 0 � 20 � x 10 dt = x − 20 1 For 20 � x < 30 : F X ( x ) = − ∞ 0 dt + 20 10 � 20 � 30 � x 1 For 30 � x : F X ( x ) = − ∞ 0 dt + 10 dt + 30 0 dt = 1 20 Together:   if x < 20 if x < 20 0 0     x − 20 1 ′ ( x )= F X ( x )= f X ( x )= F X if 20 � x � 30 if 20 � x � 30 10 10     if x � 30 if x � 30 1 0 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 14 / 33

  15. PDF vs. CDF Probability density function Cumulative distribution function 1 0.10 F X ( x ) 0.5 f X ( x ) 0 0.00 0 10 20 30 40 0 10 20 30 40 x x � F X ( x ) = . 1 if 20 � x � 30 ;  f X ( x )= if x < 20 ; 0 otherwise. 0   It’s discontinuous at x = 20 ( x − 20 ) / 10 if 20 � x � 30 ;  and 30 .  if x � 30 . 1 PDF is derivative of CDF: CDF is integral of PDF: � x ′ ( x ) f X ( x ) = F X F X ( x ) = f X ( t ) dt − ∞ Prof. Tesler Continuous Distributions Math 283 / Fall 2019 15 / 33

  16. PDF vs. CDF: Second example Probability density function Cumulative distribution function 1 density f R (r) 0.6 F R (r) 0.4 0.5 0.2 0 0 0 1 2 3 0 1 2 3 r r �  2 r / 9 if 0 � r < 3 ; if r < 0 ; 0   f R ( r )= r 2 / 9 if r � 0 or r > 3 0 F R ( r ) = if 0 � r � 3 ;  It’s discontinuous at r = 3 .  if r � 3 . 1 PDF is derivative of CDF: CDF is integral of PDF: � r ′ ( r ) f R ( r ) = F R F R ( r ) = f R ( t ) dt − ∞ Prof. Tesler Continuous Distributions Math 283 / Fall 2019 16 / 33

  17. Probability of an interval Compute P (− 1 � R � 2 ) from the PDF and also from the CDF Computation from the PDF � 2 � 0 � 2 P (− 1 � R � 2 ) = f R ( r ) dr = f R ( r ) dr + f R ( r ) dr − 1 − 1 0 � 0 � 2 2 r = 0 dr + 9 dr − 1 0 = 2 2 − 0 2 � 2 � r 2 � = 4 � = 0 + � 9 9 9 � r = 0 Computation from the CDF P (− 1 � R � 2 ) = P (− 1 − < R � 2 ) = F R ( 2 ) − F R (− 1 − ) = 2 2 9 − 0 = 4 9 Prof. Tesler Continuous Distributions Math 283 / Fall 2019 17 / 33

  18. Continuous vs. discrete random variables Cumulative distribution function Cumulative distribution function 1 1 F X (x) F R (r) 0.5 0.5 0 0 0 1 2 3 ! 1 0 1 2 r x In a continuous distribution: The probability of an individual point is 0 : P ( R = r ) = 0 . So, P ( R � r ) = P ( R < r ) , i.e., F R ( r ) = F R ( r − ) . The CDF is continuous. (In a discrete distribution, the CDF is discontinuous due to jumps at the points with nonzero probability.) P ( a < R < b )= P ( a � R < b ) = P ( a < R � b ) = P ( a � R � b ) = F R ( b ) − F R ( a ) Prof. Tesler Continuous Distributions Math 283 / Fall 2019 18 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend