cmos comparator design
play

CMOS Comparator Design Extra Slides Vishal Saxena, Boise State - PowerPoint PPT Presentation

Department of Electrical and Computer Engineering CMOS Comparator Design Extra Slides Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu) Vishal Saxena -1- Comparator Design Considerations Comparator = Preamp


  1. Department of Electrical and Computer Engineering CMOS Comparator Design Extra Slides Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu) Vishal Saxena -1-

  2. Comparator Design Considerations Comparator =   Preamp (optional)  + Reference Subtraction (optional for single-bit case)  + Regenerative Latch  +Static Latch to hold outputs (optional) Design Considerations   Accuracy (dynamic and static offset, noise, resolution)  Settling time (tracking BW, regeneration speed)  Sensitivity/resolution (gain)  Metastability (ability to make correct decisions)  Overdrive recovery (memory)  Power consumption Vishal Saxena -2-

  3. An Example CMOS Comparator V os orginiates from: V DD • Preamp input pair mismatch (V th ,W/L) M 3 M 4 M 5 M 6 • PMOS loads and Φ V os current mirror + - V o V o M 1 M 2 • Latch offset V i M 9 • Charge-Injection M 7 M 8 clock-feedthru imbalance of the reset switch (M9) V SS • Clock routing Preamp Latch • Parasitics Vishal Saxena -3-

  4. Latch Regeneration V DD PA tracking Latch Φ Latch reseting regenrating M 5 M 6 Φ V DD + - V o V o + V o M 9 C L C L V o M 7 M 8 - V o V SS V SS • Exponential regeneration due to positive feedback of M 7 and M 8 Vishal Saxena -4-

  5. Regeneration Speed – Linear Model + + - V o V o V o -1  C L C L - C L g m V o - V o M 7 M 8            V V 1 1 V       o o  o 0             1 g /sC   V   V g V /sC m L o o m o L        Δ s g /sC 1 0 s g /C , single RHP pole m L p m L            V t 0 V t 0 exp t g /C o o m L Vishal Saxena -5-

  6. Reg. Speed – Linear Model + - V o V o C L C L V o (t=0) t V o = 1V M 7 M 8 V o V o (t=0) t/(C L /g m ) 1V 100mV 2.3     C V t   L o t ln    1V 10mV 4.6   g  V t 0  m o 1V 1mV 6.9 100 μ V 1V 9.2 Vishal Saxena -6-

  7. Reg. Speed – Linear Model Reg. Speed – Linear Model + - + - M 3 M 4 V m M 5 M 6 V m g m5 V m g m5 V m + - V m V m Φ =1 R 9 R 9  x + - + - V o V o V o V o 2 2 M 1 M 2 V i M 9 X -1 -1 M 7 M 8 g m7 g m7 g g R R 1    m1 m5 9 9 A A , to be amplifier. V1 V2  2 g R 2 g g m3 m7 9 m7           V 0 V 0 A V 0 A A o i V i V1 V2           V t V 0 A A exp t g /C o i V1 V2 m L Vishal Saxena -7-

  8. Comparator Metastability Reg. Speed – Linear Model T/2           V t V 0 A A exp t g /C o i V1 V2 m L Φ Curve A V1 A V2 V i (t=0)  10 10 mV 1 2 3 4  10 1 mV + V o  100 μ V 10 - V o  10 μ V 10 Comparator fails to produce valid logic outputs within T/2 when input falls into a region that is sufficiently close to the comparator threshold Vishal Saxena -8-

  9. Comparator Metastability Reg. Speed – Linear Model D o Δ Assuming that the input is uniformly j+1 distributed over V FS , then Δ BER  V i 1 LSB j           V t V 0 A A exp t g /C o i V1 V2 m L V os • Cascade preamp stages (typical flash comparator has 2-3 pre-amp stages) • Use pipelined multi-stage latches; pre-amp can be pipelined too Vishal Saxena -9-

  10. Charge-Injection and Clock-Feedthrough in Latch Reg. Speed – Linear Model Φ M 5 M 6 Φ + - V o V o C gs C gd CM M 9 jump C L C L + V o M 7 M 8 - V o • Charge injection (CI) and clock-feedthrough (CF) introduce CM jump + and V o - in V o • Dynamic latches are more susceptible to CI and CF errors Vishal Saxena -10-

  11. Dynamic Offset of a Latch Reg. Speed – Linear Model Dynamic offset derives from: Φ • Imbalanced CI and CF • Imbalanced load capacitance • Mismatch b/t M 7 and M 8 • Mismatch b/t M 5 and M 6 + V o • Clock routing - V o  0.5V CM jump   50mV offset  10% imbalance Dynamic offset is usually the dominant offset error in latches Vishal Saxena -11-

  12. Typical CMOS Comparator Reg. Speed – Linear Model V DD • Input-referred latch offset gets divided by M 3 M 4 M 5 M 6 the gain of PA Φ V os • + - Preamp introduces V o V o M 1 M 2 its own offset (mostly V i M 9 static due to V th , W, M 7 M 8 and L mismatches) • PA also reduces V SS kickback noise Preamp Latch Kickback noise disturbs reference voltages, must settle before next sample Vishal Saxena -12-

  13. Comparator Offset Reg. Speed – Linear Model V DD Differential pair mismatch: M 3 M 4 M 5 M 6 2   W Δ   Φ 1 V os   2 L + -   2 ΔV V 2 V o V o   V M 1 M 2 os th ov W 4   V i M 9   L M 7 M 8 g g R   m1 m5 9 A A  V1 V2 g 2 g R V SS m3 m7 9 Preamp Latch  2 2 2 2 V V V V Total input-referred     2 2 os, dyn os,34 os,56 os,78 V V comparator offset: os os,12 2 2 2 2 2 A A A A A V1 V1 V2 V1 V2 Vishal Saxena -13-

  14. Recall: Matching Properties Reg. Speed – Linear Model Suppose parameter P of two rectangular devices has a mismatch error of Δ P. The variance of parameter Δ P b/t the two devices is 2 A   1 st term dominates   2 σ ΔP 2 2 P S D , P for small devices WL where, W and L are the effective width and length, D is the distance 2 A   Threshold: σ 2 2 2 Vth V = +S D th Vth WL    σ β 2 2 A β  2 2 Current factor : S D β β 2 WL Ref: M. J. M. Pelgrom, et al., “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits , vol. 24, pp. 1433-1439, issue 5, 1989. Vishal Saxena -14-

  15. Recall: Device Sizing for Mismatch Reg. Speed – Linear Model R 1 R 2 … W X X X X X X X X L 10 identical resistors   L L      with std σ 10R with std σ , R R R R 10   1 S R1 2 S 1 R2   W W 10      σ σ 10 σ σ 10 σ 2 2 2 R2 R R1 R2 R1 j  j 1   σ 10 σ σ σ “Spatial 1 1 1      R2 R1  R1  R averaging” R 10R  R  R 10 A WL 2 1 1 Vishal Saxena -15-

  16. Pre-amp Design A fully-differential gain-stage   Avoid or use simple CMFB  Pre-amp gain reduces input referred offset due to the latch  Autozeroing techniques for offset storage and reduction Pre-amp open-loop gain vs tracking bandwidth trade-off   Multiple stages of pre-amp limit bandwidth • Optimum value of stages 2-4 N stages: N   N   A A       ω  0  0 A     N j ω / ω    1   2 ω / ω 1   0 0 1 N A       ω ω ω ω 0 A , 2 N 1   N 3dB 3dB 0 2 Vishal Saxena -16-

  17. Pre-amp (PA) Autozeroing Φ 2 ' M 3 M 4 + - Φ 1 V o V o C V os Φ 2 ' V i V o M 5 M 6 Φ 2 A + - V i V i M 1 M 2  Finite preamp gain: V   OS pre amp , V OS in , A  For the overall comparator :   2 2 V    V 2 OS pre , OS latch , V 2 2 OS in , A A pre pre Vishal Saxena -17-

  18. Pre-amp Design: Pull-up load   NMOS diode pull up :   W L g     m1 1 A Pull-up   L V g W L mL + - V o V o   PMOS diode pull up :   + - V i V i M 1 M 2 μ W L g     m1 n 1 A   L V μ g W L mL p   Resistor pull up :    A g R V m1 L NMOS pull-up suffers from body effect, affecting gain accuracy • PMOS pull-up is free from body effect, but subject to P/N mismatch • Gain accuracy is the worst for resistive pull-up as resistors (poly, diffusion, well, • etc.) don’t track transistors; but it is fast! Vishal Saxena -18-

  19. Pre-amp Design: More Gain I p I p M 3 M 4 + - V o V o     μ W L g I 2       m1 n 1 A   3    V μ g I 2 I W L   m3 p p + - V i V i M 1 M 2 I • I p diverts current away from PMOS diodes (M 3 & M 4 ), reducing (W/L) 3 • Higher gain without CMFB • Needs biasing for I p • M 3 & M 4 may cut off for large V in , resulting in a slow recovery Vishal Saxena -19-

  20. Faster Settling Pre-amp M 3 M 5 M 6 M 4 1 -1 r o3 r o5 g m3 g m5 + - V o V o V id g m1 V id r o1 V od + - V i V i M 1 M 2     1 1 g r   dm        m1 o1 DM gain : A g // //r //r //r   V m1 o1 o3 o5 g  g  3   M 7 m3 m5 • NMOS diff-pair loaded with PMOS diodes and a PMOS cross-coupled latch • High DM gain, low CM gain, good CMRR • Simple, no CMFB required • (W/L) 34 > (W/L) 56 needs to be ensured for stability Ref: K. Bult and A. Buchwald, “An embedded 240 -mW 10-b 50-MS/s CMOS ADC in 1-mm 2 ,” • JSSC , vol. 32, pp. 1887-1895, issue 12, 1997. Vishal Saxena -20-

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend