bijections for the deformations of the braid arrangement
play

Bijections for the deformations of the braid arrangement Olivier - PowerPoint PPT Presentation

Bijections for the deformations of the braid arrangement Olivier Bernardi - Brandeis University 1 2 3 1 2 3 1 3 1 2 1 2 3 2 3 1 2 3 1 2 3 Discrete Math Days of the North-East, May 2017 Hyperplane arrangements A hyperplane


  1. Bijections for the deformations of the braid arrangement Olivier Bernardi - Brandeis University 1 2 3 1 2 3 1 3 1 2 1 2 3 2 3 1 2 3 1 2 3 Discrete Math Days of the North-East, May 2017

  2. Hyperplane arrangements A hyperplane arrangement of dimension n is a finite collection of affine hyperplanes in R n . Example: x 2 x 1

  3. Hyperplane arrangements A hyperplane arrangement of dimension n is a finite collection of affine hyperplanes in R n . Example: x 2 x 1 The complement of the hyperplanes is divided into regions .

  4. Braid arrangement Def: The braid arrangement of dimension n has hyperplanes { x i − x j = 0 } for all 0 ≤ i < j ≤ n .

  5. Braid arrangement Def: The braid arrangement of dimension n has hyperplanes { x i − x j = 0 } for all 0 ≤ i < j ≤ n . Example: n = 3 x 1 x 1 − x 2 = 0 x 1 − x 3 = 0 n ! regions x 2 x 3 x 2 − x 3 = 0

  6. Deformations of the braid arrangement Def: Fix S ⊂ Z finite. The S -deformed braid arrangement A S ( n ) ⊂ R n has hyperplanes { x i − x j = s } for all 0 ≤ i < j ≤ n , and all s ∈ S .

  7. Deformations of the braid arrangement Def: Fix S ⊂ Z finite. The S -deformed braid arrangement A S ( n ) ⊂ R n has hyperplanes { x i − x j = s } for all 0 ≤ i < j ≤ n , and all s ∈ S . Example: S = { 0 , 1 } and n = 3 . x 1 x 1 − x 2 = 1 x 1 − x 2 = 0 ( n + 1) n − 1 regions x 2 x 3

  8. Known counting results for S ⊆ {− 1 , 0 , 1 } [Stanley, Postnikov, Athanasiadis, . . . ]

  9. Known counting results for S ⊆ {− 1 , 0 , 1 } B ( n ) = set of rooted binary trees with n labeled nodes. 9 8 2 4 1 5 3 7 6

  10. Known counting results for S ⊆ {− 1 , 0 , 1 } S = {− 1 , 0 , 1 } S = { 0 , 1 } S = {− 1 , 1 } S = { 1 } S = { 0 } Catalan Shi Semi-order Braid Linial T ∈B ( n ) T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. . . . . . . . . . . . .

  11. Known counting results for S ⊆ {− 1 , 0 , 1 } S = {− 1 , 0 , 1 } S = { 0 , 1 } S = {− 1 , 1 } S = { 1 } S = { 0 } Catalan Shi Semi-order Braid Linial T ∈B ( n ) T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. w w v v v v v v v v v v v v u u u u u u u u u u u u u u ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ u>v u>v u>v v >u u>v u>v

  12. Known counting results for S ⊆ {− 1 , 0 , 1 } S = {− 1 , 0 , 1 } S = { 0 , 1 } S = {− 1 , 1 } S = { 1 } S = { 0 } Catalan Shi Semi-order Braid Linial T ∈B ( n ) T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. w w v v v v v v v v v v v v u u u u u u u u u u u u u u ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ u>v u>v u>v v >u u>v u>v “ Why? ” Ira Gessel

  13. Known counting results for S ⊆ {− 1 , 0 , 1 } S = {− 1 , 0 , 1 } S = { 0 , 1 } S = {− 1 , 1 } S = { 1 } S = { 0 } Catalan Shi Semi-order Braid Linial T ∈B ( n ) T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. w w v v v v v v v v v v v v v u u u u u u u u u u u u u u ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ u>v u>v u>v v >u u>v u>v v v v u u u “ Why? ” ⇓ ⇓ ⇓ Ira Gessel u>v u>v u>v & u<v

  14. Bijection

  15. Bijection for S ⊆ {− 1 , 0 , 1 } Trees: T S ( n ) = set of trees in B ( n ) such that: If − 1 / ∈ S If 0 / ∈ S If 1 / ∈ S v v v ⇒ u>v ⇒ u>v ⇒ u<v u u u

  16. Bijection for S ⊆ {− 1 , 0 , 1 } Trees: T S ( n ) = set of trees in B ( n ) such that: If − 1 / ∈ S If 0 / ∈ S If 1 / ∈ S v v v ⇒ u>v ⇒ u>v ⇒ u<v u u u Map: Φ S : T S ( n ) �→ regions of A S ( n ) � � Φ S ( T ) = { x i − x j < s } { x i − x j > s } s ∈ S, 1 ≤ i<j ≤ n s ∈ S, 1 ≤ i<j ≤ n ( s,i,j ) ∈ T + ∈ T + ( s,i,j ) / where T + is . . .

  17. Bijection for S ⊆ {− 1 , 0 , 1 } Trees: T S ( n ) = set of trees in B ( n ) such that: If − 1 / ∈ S If 0 / ∈ S If 1 / ∈ S v v v ⇒ u>v ⇒ u>v ⇒ u<v u u u q Tree order: s h m r p p a ≺ T b ≺ T c ≺ T d ≺ T e · · · c l g o o f b k k n j e i d a

  18. Bijection for S ⊆ {− 1 , 0 , 1 } Trees: T S ( n ) = set of trees in B ( n ) such that: If − 1 / ∈ S If 0 / ∈ S If 1 / ∈ S v v v ⇒ u>v ⇒ u>v ⇒ u<v u u u Map: Φ S : T S ( n ) �→ regions of A S ( n ) � � Φ S ( T ) = { x i − x j < s } { x i − x j > s } s ∈ S, 1 ≤ i<j ≤ n s ∈ S, 1 ≤ i<j ≤ n ( s,i,j ) ∈ T + ∈ T + ( s,i,j ) / (0 , i, j ) ∈ T + where if i ≺ T j , ( − 1 , i, j ) ∈ T + if right-child ( i ) � T j , (1 , i, j ) ∈ T + if i ≺ T right-child ( j ) .

  19. Bijection for S ⊆ {− 1 , 0 , 1 } Trees: T S ( n ) = set of trees in B ( n ) such that: If − 1 / ∈ S If 0 / ∈ S If 1 / ∈ S v v v ⇒ u>v ⇒ u>v ⇒ u<v u u u Map: Φ S : T S ( n ) �→ regions of A S ( n ) � � Φ S ( T ) = { x i − x j < s } { x i − x j > s } s ∈ S, 1 ≤ i<j ≤ n s ∈ S, 1 ≤ i<j ≤ n ( s,i,j ) ∈ T + ∈ T + ( s,i,j ) / (0 , i, j ) ∈ T + where if i ≺ T j , ( − 1 , i, j ) ∈ T + if right-child ( i ) � T j , (1 , i, j ) ∈ T + if i ≺ T right-child ( j ) . Thm: Φ S is a bijection between T S ( n ) and the regions of A S ( n ) .

  20. Example: Linial S = { 1 } T S ( n ) : v ⇒ u>v u v ⇒ u>v u

  21. Example: Linial S = { 1 } x 1 1 2 T S ( n ) : Φ S : 3 1 2 3 v 1 ⇒ u>v 2 u 3 2 1 3 1 3 2 v ⇒ u>v 1 u 2 3 1 2 3 x 2 x 3

  22. Example: Linial S = { 1 } x 1 1 2 T S ( n ) : Φ S : 3 1 2 3 v 1 ⇒ u>v 2 u 3 2 1 3 1 3 2 v ⇒ u>v 1 u 2 3 x 1 − x 2 =1 1 2 3 x 2 x 3 � � Φ S ( T ) = { x i − x j < 1 } { x i − x j > 1 } 1 ≤ i<j ≤ n 1 ≤ i<j ≤ n i ≺ T right-child ( j ) i � T right-child ( j )

  23. Generalization S ⊆ [ − m..m ] • T ( m ) = set of rooted ( m +1) -ary trees with labeled nodes. 7 1 9 13 3 10 4 4 11 1 12 8 5 2 6

  24. Generalization S ⊆ [ − m..m ] • T ( m ) = set of rooted ( m +1) -ary trees with labeled nodes. • The last node among the children of u is denoted cadet( u ) . 7 1 9 13 3 10 4 4 11 1 12 8 5 2 6

  25. Generalization S ⊆ [ − m..m ] • T ( m ) = set of rooted ( m +1) -ary trees with labeled nodes. • The last node among the children of u is denoted cadet( u ) . Def: T S = set of trees in T ( m ) such that for all v = cadet ( u ) , • # left-siblings ( v ) / ∈ S ∪ { 0 } ⇒ u < v , • − # left-siblings ( v ) / ∈ S ⇒ u > v . # left-siblings(v) v u

  26. Generalization S ⊆ [ − m..m ] Def: S is transitive if it satisfies: • if a, b / ∈ S , with ab > 0 , then a + b / ∈ S , • if a, b / ∈ S , with ab < 0 , then a − b / ∈ S , • if 0 , a / ∈ S , with a > 0 , then − a / ∈ S .

  27. Generalization S ⊆ [ − m..m ] Def: S is transitive if it satisfies: • if a, b / ∈ S , with ab > 0 , then a + b / ∈ S , • if a, b / ∈ S , with ab < 0 , then a − b / ∈ S , • if 0 , a / ∈ S , with a > 0 , then − a / ∈ S . Examples of transitive sets: • Any subset of {− 1 , 0 , 1 } . • Any interval of integers containing 1 . • S such that [ − k..k ] ⊆ S ⊆ [ − 2 k.. 2 k ] for some k .

  28. Generalization S ⊆ [ − m..m ] Def: S is transitive if it satisfies: • if a, b / ∈ S , with ab > 0 , then a + b / ∈ S , • if a, b / ∈ S , with ab < 0 , then a − b / ∈ S , • if 0 , a / ∈ S , with a > 0 , then − a / ∈ S . Examples of transitive sets: • Any subset of {− 1 , 0 , 1 } . • Any interval of integers containing 1 . • S such that [ − k..k ] ⊆ S ⊆ [ − 2 k.. 2 k ] for some k . Thm: If S is transitive, then Φ S is a bijection between T S ( n ) and the regions of A S ( n ) .

  29. Direct proof for S ⊆ {− 1 , 0 , 1 }

  30. Warm up: Braid arrangement x 1 x 1 − x 2 = 0 x 1 − x 3 = 0 x 2 x 3 x 2 − x 3 = 0

  31. Warm up: Braid arrangement x 1 x 1 − x 2 = 0 x 1 − x 3 = 0 ( x 1 , x 2 , x 3 ) x 2 x 3 x 2 − x 3 = 0 x 2 x 1 x 3

  32. Warm up: Braid arrangement x 1 x 1 − x 2 = 0 x 1 − x 3 = 0 ( x 1 , x 2 , x 3 ) x 2 x 3 x 2 − x 3 = 0 x 2 x 1 x 3 n ! 2 1 3

  33. Catalan arrangement S = {− 1 , 0 , 1 } x 1 x 1 − x 2 = 1 x 1 − x 2 = 0 x 1 − x 2 = − 1 ( x 1 , x 2 , x 3 ) x 2 x 3 x 2 +1 x 1 +1 x 3 +1 x 2 x 1 x 1 x 3

  34. Catalan arrangement S = {− 1 , 0 , 1 } x 1 x 1 − x 2 = 1 x 1 − x 2 = 0 x 1 − x 2 = − 1 ( x 1 , x 2 , x 3 ) x 2 x 3 x 2 +1 x 1 +1 x 3 +1 x 2 x 1 x 1 x 3 non-nesting parentheses 2 1 3 n ! Cat ( n )

  35. Catalan schemes = labeled non-nesting parenthesis systems x 1 3 2 1 2 3 1 3 2 1 2 3 1 3 2 1 2 3 1 3 2 1 2 3 1 3 1 2 2 1 3 321 231 3 1 2 2 1 3 3 1 2 312 213 2 1 3 132 123 3 1 2 2 1 3 1 3 2 1 2 3 1 3 2 1 2 3 1 3 2 1 2 3 x 2 x 3 1 3 2 1 2 3

  36. Shi/SO/Linial regions as equivalence classes of schemes Definition: • Shi moves ( S = { 0 , 1 } ): j i i j if i < j • Semi-order moves ( S = {− 1 , 1 } ): j i j i • Linial moves ( S = { 1 } ) = Shi moves + semi-order moves

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend