shaken braid arrangements and trees
play

Shaken braid arrangements and trees Olivier Bernardi - Brandeis - PowerPoint PPT Presentation

Shaken braid arrangements and trees Olivier Bernardi - Brandeis University 9 2 8 4 1 5 3 7 6 MIT, February 2016 Shaken braid arrangements and trees Olivier Bernardi - Brandeis University 9 2 8 4 1 5 3 7 6 4 1 5 6 9 7 2


  1. Shaken braid arrangements and trees Olivier Bernardi - Brandeis University 9 2 8 4 1 5 3 7 6 MIT, February 2016

  2. Shaken braid arrangements and trees Olivier Bernardi - Brandeis University 9 2 8 4 1 5 3 7 6 4 1 5 6 9 7 2 3 8 MIT, February 2016

  3. Hyperplane arrangements A hyperplane arrangement of dimension n is a finite collection of affine hyperplanes in R n . Example: x 2 x 1

  4. Hyperplane arrangements A hyperplane arrangement of dimension n is a finite collection of affine hyperplanes in R n . Example: The hyperplanes cut the space into regions . x 2 7 regions x 1

  5. Braid arrangement Def: The braid arrangement of dimension n has hyperplanes { x i − x j = 0 } for all 0 ≤ i < j ≤ n .

  6. Braid arrangement Def: The braid arrangement of dimension n has hyperplanes { x i − x j = 0 } for all 0 ≤ i < j ≤ n . Example: n = 3 x 1 x 1 − x 3 = 0 x 1 − x 2 = 0 x 3 x 2 x 2 − x 3 = 0

  7. Braid arrangement Def: The braid arrangement of dimension n has hyperplanes { x i − x j = 0 } for all 0 ≤ i < j ≤ n . Example: n = 3 x 1 x 1 − x 3 = 0 x 1 − x 2 = 0 n ! regions x 3 x 2 x 2 − x 3 = 0

  8. Shaken braid arrangements Def: Fix S ⊂ Z finite. The S -shaken braid arrangement A S ( n ) ⊂ R n has hyperplanes { x i − x j = s } for all 0 ≤ i < j ≤ n , and all s ∈ S . We denote r S ( n ) = # regions of A S ( n ) .

  9. Shaken braid arrangements Def: Fix S ⊂ Z finite. The S -shaken braid arrangement A S ( n ) ⊂ R n has hyperplanes { x i − x j = s } for all 0 ≤ i < j ≤ n , and all s ∈ S . We denote r S ( n ) = # regions of A S ( n ) . Example: S = { 0 , 1 } and n = 3 . x 1 x 1 − x 2 = 1 x 1 − x 2 = 0 r S (3) = 16 x 3 x 2

  10. Known relations with trees [Athanasiadis, Postnikov, Stanley,. . . ] Let B ( n ) be the set of rooted binary trees with n labeled nodes. 9 8 2 4 1 5 3 7 6 (2 n )! |B ( n ) | = Cat ( n ) × n ! = ( n + 1)!

  11. Known relations with trees [Athanasiadis, Postnikov, Stanley,. . . ] S = {− 1 , 0 , 1 } S = { 0 , 1 } S = {− 1 , 1 } S = { 1 } S = { 0 } Catalan Shi Semi-order Braid Linial T ∈B ( n ) T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. w w w v v v v v v v v u u u u u u u u u u u u > v u > v u < v u > v u > w u > w

  12. Known relations with trees [Athanasiadis, Postnikov, Stanley,. . . ] S = {− 1 , 0 , 1 } S = { 0 , 1 } S = {− 1 , 1 } S = { 1 } S = { 0 } Catalan Shi Semi-order Braid Linial T ∈B ( n ) T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. w w w v v v v v v v v u u u u u u u u u u u u > v u > v u < v u > v u > w u > w “ Why? ” Ira Gessel

  13. Known relations with trees [Athanasiadis, Postnikov, Stanley,. . . ] S = {− 1 , 0 , 1 } S = { 0 , 1 } S = {− 1 , 1 } S = { 1 } S = { 0 } Catalan Shi Semi-order Braid Linial T ∈B ( n ) T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. T ∈B ( n ) s.t. w w w v v v v v v v v u u u u u u u u u u u u > v u > v u < v u > v u > w u > w u n v v “ Why? ” u 2 u u Ira Gessel u 1 u > v u > v

  14. Arrangements, trees, and discrete gas

  15. Boxed trees • T ( m ) = set of rooted ( m +1) -ary trees with labeled nodes. 7 1 9 13 3 10 4 4 1 11 12 8 5 2 6

  16. Boxed trees • T ( m ) = set of rooted ( m +1) -ary trees with labeled nodes. • The last node among the children of u is denoted cadet( u ) . • A cadet-sequence is any sequence of node ( v 1 , . . . , v k ) such that v i +1 = cadet( v i ) . 7 1 9 13 3 10 4 4 1 11 12 8 5 2 6

  17. Boxed trees • T ( m ) = set of rooted ( m +1) -ary trees with labeled nodes. • The last node among the children of u is denoted cadet( u ) . • A cadet-sequence is any sequence of node ( v 1 , . . . , v k ) such that v i +1 = cadet( v i ) . • A m - boxed tree is a tree in T ( m ) decorated with boxes partitioning the nodes into cadet-sequences. 7 1 9 13 3 10 4 4 1 11 12 8 5 2 6

  18. Main result Let S ⊂ Z . Let m = max( | s | , s ∈ S ) . Def: A S -boxed tree is a m -boxed tree such that each box satisfies ∀ i < j , if ( c i + c i +1 + · · · + c j − 1 ) ∈ S ∪ { 0 } then v i < v j , if − ( c i + c i +1 + · · · + c j − 1 ) ∈ S then v i > v j . m + 1 c j v k c i v j c 1 v 2 v i v 1

  19. Main result Let S ⊂ Z . Let m = max( | s | , s ∈ S ) . Def: A S -boxed tree is a m -boxed tree such that each box satisfies ∀ i < j , if ( c i + c i +1 + · · · + c j − 1 ) ∈ S ∪ { 0 } then v i < v j , if − ( c i + c i +1 + · · · + c j − 1 ) ∈ S then v i > v j . Example: S = [ − a .. m ] with a ∈ { 0 , ..., m } a<c i ≤ m v k v 2 v i v 1 <v 2 < · · · <v k v 1

  20. Main result Let S ⊂ Z . Let m = max( | s | , s ∈ S ) . Def: A S -boxed tree is a m -boxed tree such that each box satisfies ∀ i < j , if ( c i + c i +1 + · · · + c j − 1 ) ∈ S ∪ { 0 } then v i < v j , if − ( c i + c i +1 + · · · + c j − 1 ) ∈ S then v i > v j . Theorem: � ( − 1) n − # boxes , r S ( n ) = T ∈U S ( n ) where U S ( n ) is the set of S -boxed trees with n nodes,

  21. Corollary Def: S is transitive if • If a, b / ∈ S , with ab > 0 , then a + b / ∈ S , • If a, b / ∈ S , with ab < 0 , then a − b / ∈ S , • If 0 , a / ∈ S , with a > 0 , then − a / ∈ S .

  22. Corollary Def: S is transitive if • If a, b / ∈ S , with ab > 0 , then a + b / ∈ S , • If a, b / ∈ S , with ab < 0 , then a − b / ∈ S , • If 0 , a / ∈ S , with a > 0 , then − a / ∈ S . Examples: • Any subset of {− 1 , 0 , 1 } . • Any interval of integers containing 1 . • S such that [ − k ; k ] ⊆ S ⊆ [ − 2 k ; 2 k ] for some k .

  23. Corollary Def: S is transitive if • If a, b / ∈ S , with ab > 0 , then a + b / ∈ S , • If a, b / ∈ S , with ab < 0 , then a − b / ∈ S , • If 0 , a / ∈ S , with a > 0 , then − a / ∈ S . Def: T S is set of trees in T ( m ) such that any v = cadet ( u ) satisfies Cond ( S ) : if # left-siblings ( v ) / ∈ S ∪ { 0 } then u < v , if − # left-siblings ( v ) / ∈ S then u > v . # left-siblings(v) v u

  24. Corollary Def: S is transitive if • If a, b / ∈ S , with ab > 0 , then a + b / ∈ S , • If a, b / ∈ S , with ab < 0 , then a − b / ∈ S , • If 0 , a / ∈ S , with a > 0 , then − a / ∈ S . Def: T S is set of trees in T ( m ) such that any v = cadet ( u ) satisfies Cond ( S ) : if # left-siblings ( v ) / ∈ S ∪ { 0 } then u < v , if − # left-siblings ( v ) / ∈ S then u > v . Corollary: If S is transitive, then r S ( n ) = | T S ( n ) |

  25. Corollary Def: T S is set of trees in T ( m ) such that any v = cadet ( u ) satisfies Cond ( S ) : if # left-siblings ( v ) / ∈ S ∪ { 0 } then u < v , if − # left-siblings ( v ) / ∈ S then u > v . Corollary: If S is transitive, then r S ( n ) = | T S ( n ) | Example: S = {− 2 , − 1 , 0 , 1 , 3 } v v Cond ( S ) : ⇒ u < v ⇒ u > v u u

  26. Corollary Def: T S is set of trees in T ( m ) such that any v = cadet ( u ) satisfies Cond ( S ) : if # left-siblings ( v ) / ∈ S ∪ { 0 } then u < v , if − # left-siblings ( v ) / ∈ S then u > v . Corollary: If S is transitive, then r S ( n ) = | T S ( n ) | Example: If S = [ − m..m ] , then T S ( n ) = T ( m ) ( n ) . Catalan Semiorder If S [ − m..m ] \ { 0 } , then Cond(S)=“cadets with 0 left-siblings are less than parent”. Shi If S = [ − a..m ] with a ∈ { 0 , . . . , m } , then Cond(S)=“cadets with > a left-siblings are less than parent”. Linial If S [ − a..m ] \ { 0 } with a ∈ { 0 , . . . , m } , then Cond(S)=“cadets with 0 or > a left-siblings are less than parent”.

  27. Proof of corollary. Locality: For S transitive a m -boxed tree is S -boxed if and only if ∀ i < j , if c i ∈ S ∪ { 0 } then v i < v i +1 , if − c i ∈ S then v i > v i +1 . v k c i v i + 1 v 2 v i v 1

  28. Proof of corollary. Locality: For S transitive a m -boxed tree is S -boxed if and only if ∀ i < j , if c i ∈ S ∪ { 0 } then v i < v i +1 , if − c i ∈ S then v i > v i +1 . Remark: For v = cadet( u ) u, v satisfies Cond(S) ⇐ ⇒ u and v cannot be in same S -box.

  29. Proof of corollary. Locality: For S transitive a m -boxed tree is S -boxed if and only if ∀ i < j , if c i ∈ S ∪ { 0 } then v i < v i +1 , if − c i ∈ S then v i > v i +1 . Remark: For v = cadet( u ) u, v satisfies Cond(S) ⇐ ⇒ u and v cannot be in same S -box. Sign-reversing involution: ( − 1) n − # boxes + � � ( − 1) n − # boxes r S ( n ) = T ∈U S , T ∈U S , satisfying Cond(S) not satisfying Cond(S) 0 |T S ( n ) | Merge/split box at v = cadet ( u ) Must have a different box not satisfying Cond(S). around each node.

  30. Proof of Theorem x 1 9 8 2 4 1 5 3 7 6 x 3 x 2 Zaslavky formula Zaslavky formula Decomposition in runs + Mayers’ clusters + Mayers’ clusters 4 6 1 9 7 2 5 3 8 discrete gas model

  31. � ( − 1) e + c − n | W S ( G ) | , Lemma 1: r S ( n ) = G =([ n ] ,E ) where e =#edges, c =#components, n =#vertices, and W S ( G ) = set of tuples ( x 1 , . . . , x n ) such that • ∀{ i, j } ∈ E with i < j , x i − x j ∈ S , • ∀ i ∈ [ n ] smallest in its component, x i = 0 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend