representations of the virtual braid groups to the rook
play

Representations of the virtual braid groups to the rook algebras - PowerPoint PPT Presentation

Representations of the virtual braid groups to the rook algebras Konstantin Gotin Novosibirsk State University July 25, 2014 1 / 15 Konstantin Gotin Virtual braid groups and rook algebras Definition Braid group on n strands, denoted by B n ,


  1. Representations of the virtual braid groups to the rook algebras Konstantin Gotin Novosibirsk State University July 25, 2014 1 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  2. Definition Braid group on n strands, denoted by B n , is group generated by σ 1 , . . . , σ n − 1 satisfying the following relations: σ i σ j = σ j σ i if | i − j | > 1 σ i +1 σ i σ i +1 = σ i σ i +1 σ i if i = 1 , . . . , n − 1 2 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  3. Definition Virtual braid group on n strands, denoted by V B n , is group with generators: σ 1 , . . . , σ n − 1 , ρ 1 , . . . , ρ n − 1 and relations: σ i σ j = σ j σ i if | i − j | > 1 σ i +1 σ i σ i +1 = σ i σ i +1 σ i if i = 1 , . . . , n − 1 ρ 2 i = e if i = 1 , . . . , n − 1 ρ i +1 ρ i ρ i +1 = ρ i ρ i +1 ρ i if i = 1 , . . . , n − 1 ρ i ρ j = ρ j ρ i if | i − j | > 1 ρ i ρ i +1 σ i = σ i +1 ρ i ρ i +1 if i = 1 , . . . , n − 1 σ i ρ j = ρ j σ i if | i − j | > 1 3 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  4. Definition Let R n denote set of n × n matrices with entries from { 0, 1 } having at most one 1 in each row and in each column. Example for n = 2 �� � � � � � � � � � � � � �� 0 0 1 0 0 1 0 0 0 0 1 0 0 1 , , , , , , 0 0 0 0 0 0 1 0 0 1 0 1 1 0 4 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  5. Definition Rook diagram – bipartite graph on two rows of n vertices, one on top of the other forming the boundary of a rectangle, such that each vertex has degree either zero or one.  0 1 0 0 0 0  0 0 0 1 0 0     • • • • • • 0 0 0 0 0 0 . . . .   . . . . . . . . . . . . . . . . . . . . . . . . . . . ↔ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . . 0 0 1 0 0 0 . . . . . . . . . . . . . • . . . • • . . . . . . . . • • . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   0 0 0 0 0 1   0 0 0 0 0 0 5 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  6. Definition The product, d 1 d 2 , of two rook diagrams d 1 and d 2 is obtained by stacking d 1 on top of d 2 and deleting any edge from one that connects to a vertex zero degree end from the other. • • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d 1 = • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . . . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = . . . . . . = d 1 d 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • • • • . . . . . . . . . . . . . . . . . . • • . . . . . . • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d 2 = • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . . • . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  7. Definition Given two diagrams, a , b ∈ R n , we define the tensor product, denoted a ⊗ b , to be the result of appending of b to the right of a . • • • • • • • • • • • • • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⊗ • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . • . . . . . . . . • • • . . . • . . . • • . . . . . • . . . . . • . . . . . . . . . . • • . . . • . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  8. Definition Element of R n is planar if its diagram can be drawn (keeping inside of the rectangle formed by its vertices) without any edge crossings. • • • • • • • • • • • • • • • • • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . • . . . • • . . . • . . . • • . • . . . • • • • • • • . . . • . . . • . . . • . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 / 15 Konstantin Gotin Virtual braid groups and rook algebras

  9. Definition P n – planar rook monoid – set of planar diagrams of R n . Definition C R n ( C P n ) – (planar) rook algebra – C -algebra generated by R n ( P n ) with multiplication defined using the distributive law and multiplication in R n ( P n ). 9 / 15 Konstantin Gotin Virtual braid groups and rook algebras

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend