invariants of virtual links
play

INVARIANTS OF VIRTUAL LINKS Julia Mikhalchishina NOVOSIBIRSK 2015 - PowerPoint PPT Presentation

INVARIANTS OF VIRTUAL LINKS Julia Mikhalchishina NOVOSIBIRSK 2015 Braid group B n = 1 , . . . , n 1 the braid group . i i + 1 i = i + 1 i i + 1 for i = 1 , 2 , . . . , n 2 , = for | i j |


  1. INVARIANTS OF VIRTUAL LINKS Julia Mikhalchishina NOVOSIBIRSK – 2015

  2. Braid group B n = � σ 1 , . . . , σ n − 1 � – the braid group . σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 for i = 1 , 2 , . . . , n − 2 , = for | i − j | ≥ 2 . σ i σ j σ j σ i

  3. Braid group B n = � σ 1 , . . . , σ n − 1 � – the braid group . σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 for i = 1 , 2 , . . . , n − 2 , = for | i − j | ≥ 2 . σ i σ j σ j σ i σ i σ − 1 = 1 i

  4. Braid group B n = � σ 1 , . . . , σ n − 1 � – the braid group . σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 for i = 1 , 2 , . . . , n − 2 , = for | i − j | ≥ 2 . σ i σ j σ j σ i σ i σ − 1 = 1 i ( σ 2 σ − 1 1 ) n Example:

  5. Knots and links A knot S 1 − → S 3

  6. Knots and links A knot S 1 − → S 3 An n -component link S 1 × . . . × S 1 → S 3 − � �� � n

  7. The connection between braids and knots Alexander’s theorem. Given a link L then ∃ β ∈ B n : L = � β.

  8. The connection between braids and knots Alexander’s theorem. Given a link L then ∃ β ∈ B n : L = � β. Рис.: The trefoil T = � σ 3 1

  9. Markov’s theorem. Given braids β 1 , β 2 ∈ B n then M 1 , M 2 β 1 = � � β 2 ⇐ ⇒ β 1 − − − − → β 2 β ↔ σ i βσ − 1 M 1 i = 1 , 2 , . . . , n − 2 , (1) i β ↔ βσ ± 1 β ∈ B n , βσ ± 1 M 2 ∈ B n + 1 . (2) n n

  10. Group of the link G ( L ) = π 1 ( S 3 \ N ( L )) .

  11. Group of the link G ( L ) = π 1 ( S 3 \ N ( L )) . "Braid method". Given L = � β G ( L ) = � x 1 , . . . , x n � ϕ A ( β )( x i ) = x i , i = 1 , 2 , . . . , n � , where ϕ A : B n − → Aut ( F n ) – the Artin representation  x i �→ x i x i + 1 x − 1 i ,  ϕ A ( σ i ) : x i + 1 �→ x i ,  x j �→ x j , j � = i , i + 1 .

  12. Virtual braid group VB n = � B n , S n � = � σ 1 , . . . , σ n − 1 , ρ 1 , . . . , ρ n − 1 � – the virtual braid group . � σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 for i = 1 , 2 , . . . , n − 2 , I = for | i − j | ≥ 2 . σ i σ j σ j σ i

  13. Virtual braid group VB n = � B n , S n � = � σ 1 , . . . , σ n − 1 , ρ 1 , . . . , ρ n − 1 � – the virtual braid group . � σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 for i = 1 , 2 , . . . , n − 2 , I = for | i − j | ≥ 2 . σ i σ j σ j σ i  ρ i ρ i + 1 ρ i = ρ i + 1 ρ i ρ i + 1 for i = 1 , 2 , . . . , n − 2 ,  for | i − j | ≥ 2 , II ρ i ρ j = ρ j ρ i  ρ 2 = 1 for i = 1 , 2 , ..., n − 2 . i

  14. Virtual braid group VB n = � B n , S n � = � σ 1 , . . . , σ n − 1 , ρ 1 , . . . , ρ n − 1 � – the virtual braid group . � σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 for i = 1 , 2 , . . . , n − 2 , I = for | i − j | ≥ 2 . σ i σ j σ j σ i  ρ i ρ i + 1 ρ i = ρ i + 1 ρ i ρ i + 1 for i = 1 , 2 , . . . , n − 2 ,  for | i − j | ≥ 2 , II ρ i ρ j = ρ j ρ i  ρ 2 = 1 for i = 1 , 2 , ..., n − 2 . i � ρ i ρ i + 1 σ i = for i = 1 , 2 , . . . , n − 2 , σ i + 1 ρ i ρ i + 1 III σ i ρ j = ρ j σ i for | i − j | ≥ 2 .

  15. Virtual braid group VB n = � B n , S n � = � σ 1 , . . . , σ n − 1 , ρ 1 , . . . , ρ n − 1 � – the virtual braid group . � σ i σ i + 1 σ i = σ i + 1 σ i σ i + 1 for i = 1 , 2 , . . . , n − 2 , I = for | i − j | ≥ 2 . σ i σ j σ j σ i  ρ i ρ i + 1 ρ i = ρ i + 1 ρ i ρ i + 1 for i = 1 , 2 , . . . , n − 2 ,  for | i − j | ≥ 2 , II ρ i ρ j = ρ j ρ i  ρ 2 = 1 for i = 1 , 2 , ..., n − 2 . i � ρ i ρ i + 1 σ i = for i = 1 , 2 , . . . , n − 2 , σ i + 1 ρ i ρ i + 1 III σ i ρ j = ρ j σ i for | i − j | ≥ 2 .

  16. Bardakov, Bellingeri; Manturov ψ : VB n − → Aut ( F n + 1 ) , F n + 1 = � x 1 , . . . , x n , y � .

  17. Bardakov, Bellingeri; Manturov ψ : VB n − → Aut ( F n + 1 ) , F n + 1 = � x 1 , . . . , x n , y � . ψ | B n = ϕ A .   x i �→ x i x i + 1 x − 1 x i �→ yx i + 1 y − 1 , i ,       x i + 1 �→ y − 1 x i y , x i + 1 �→ x i , ψ ( σ i ) : ψ ( ρ i ) :  x j �→ x j , j � = i , i + 1 ,  x j �→ x j , j � = i , i + 1 ,     y �→ y . y �→ y .

  18. Group of the virtual link Let L v = � β v , β v ∈ VB n , G ( L v ) = � x 1 , . . . , x n , y � ψ ( β v )( x i ) = x i , i = 1 , 2 , . . . , n � .

  19. Group of the virtual link Let L v = � β v , β v ∈ VB n , G ( L v ) = � x 1 , . . . , x n , y � ψ ( β v )( x i ) = x i , i = 1 , 2 , . . . , n � . Example: The virtual trefoil T v = � σ 2 1 ρ 1

  20. Group of the virtual link Let L v = � β v , β v ∈ VB n , G ( L v ) = � x 1 , . . . , x n , y � ψ ( β v )( x i ) = x i , i = 1 , 2 , . . . , n � . Example: The virtual trefoil T v = � σ 2 1 ρ 1 G ( T v ) = G ( � 1 ρ 1 ) = � x 1 , x 2 , y � ψ ( σ 2 1 ρ 1 )( x 1 ) = x 1 , ψ ( σ 2 σ 2 1 ρ 1 )( x 2 ) = x 2 � .

  21. Wada representations w r 1 , w 2 , w 3 : B n − → Aut ( F n ) .  x i → x r i x i + 1 x − r ,  i w r 1 ( σ i ) : x i + 1 → x i ,  x j → x j , for j � = i , i + 1 , r ∈ Z , r � = 0 . Note for r = 1 this is the Artin representation.  x i → x i x − 1 i + 1 x i ,  w 2 ( σ i ) : x i + 1 → x i ,  x j → x j , for j � = i , i + 1 .  x i → x 2 i x i + 1 ,  x i + 1 → x − 1 i + 1 x − 1 w 3 ( σ i ) : x i + 1 , i  x j → x j , for j � = i , i + 1 .

  22. Wada representations w 1 , w 2 , w 3 : B n − → Aut ( F n ) .

  23. Wada representations w 1 , w 2 , w 3 : B n − → Aut ( F n ) . We construct the mappings W k : VB n − → Aut ( F n + 1 ) , k = 1 , 2 , 3 , W k | B n = w k .  x i �→ yx i + 1 y − 1 ,  x i + 1 �→ y − 1 x i y , W k ( ρ i ) :  x j �→ x j , for j � = i , i + 1 .

  24. Wada representations w 1 , w 2 , w 3 : B n − → Aut ( F n ) . We construct the mappings W k : VB n − → Aut ( F n + 1 ) , k = 1 , 2 , 3 , W k | B n = w k .  x i �→ yx i + 1 y − 1 ,  x i + 1 �→ y − 1 x i y , W k ( ρ i ) :  x j �→ x j , for j � = i , i + 1 . Proposition. Constructed mappings W k , k = 1 , 2 , 3 , are representations of VB n − → AutF n + 1 .

  25. Let L v = � β v , β v ∈ VB n , k = 1 , 2 , 3 , G k ( L v ) = � x 1 , . . . , x n , y � W k ( β v )( x i ) = x i , i = 1 , 2 , . . . , n � .

  26. Let L v = � β v , β v ∈ VB n , k = 1 , 2 , 3 , G k ( L v ) = � x 1 , . . . , x n , y � W k ( β v )( x i ) = x i , i = 1 , 2 , . . . , n � . Theorem. Groups G k ( L v ) are invariants of the virtual link L v , k = 1 , 2 , 3.

  27. Markov Theorem for virtuals Theorem (Kauffman, Lambropoulou). Given braids β 1 , β 2 ∈ VB n then K 1 , K 2 , K 3 , K 4 β 1 = � � β 2 ⇐ ⇒ β 1 − − − − − − − − → β 2

  28. Markov Theorem for virtuals Theorem (Kauffman, Lambropoulou). Given braids β 1 , β 2 ∈ VB n then K 1 , K 2 , K 3 , K 4 β 1 = � � β 2 ⇐ ⇒ β 1 − − − − − − − − → β 2 ρ k β v ρ k ∼ β v ∼ σ k β v σ − 1 K1) Virtual and real conjugation: k ,

  29. Markov Theorem for virtuals Theorem (Kauffman, Lambropoulou). Given braids β 1 , β 2 ∈ VB n then K 1 , K 2 , K 3 , K 4 β 1 = � � β 2 ⇐ ⇒ β 1 − − − − − − − − → β 2 ρ k β v ρ k ∼ β v ∼ σ k β v σ − 1 K1) Virtual and real conjugation: k , β v ρ n ∼ β v ∼ β v σ ± 1 K2) Right virtual and real stabilization: n ,

  30. Markov Theorem for virtuals Theorem (Kauffman, Lambropoulou). Given braids β 1 , β 2 ∈ VB n then K 1 , K 2 , K 3 , K 4 β 1 = � � β 2 ⇐ ⇒ β 1 − − − − − − − − → β 2 ρ k β v ρ k ∼ β v ∼ σ k β v σ − 1 K1) Virtual and real conjugation: k , β v ρ n ∼ β v ∼ β v σ ± 1 K2) Right virtual and real stabilization: n , β v ∼ β v σ ± 1 n ρ n − 1 σ ∓ 1 K3) Algebraic right over/under threading: n ,

  31. Markov Theorem for virtuals Theorem (Kauffman, Lambropoulou). Given braids β 1 , β 2 ∈ VB n then K 1 , K 2 , K 3 , K 4 β 1 = � � β 2 ⇐ ⇒ β 1 − − − − − − − − → β 2 ρ k β v ρ k ∼ β v ∼ σ k β v σ − 1 K1) Virtual and real conjugation: k , β v ρ n ∼ β v ∼ β v σ ± 1 K2) Right virtual and real stabilization: n , β v ∼ β v σ ± 1 n ρ n − 1 σ ∓ 1 K3) Algebraic right over/under threading: n , K4) Algebraic left over/under threading: β v ∼ β v ρ n ρ n − 1 σ ∓ 1 n − 1 ρ n σ ± 1 n − 1 ρ n − 1 ρ n , где β v , ρ k , σ k ∈ VB n , k = 1 , . . . , n − 1, а ρ n , σ n ∈ VB n + 1 .

  32. w 1 , w 2 , w 3 : B n − → Aut ( F n ) .

  33. w 1 , w 2 , w 3 : B n − → Aut ( F n ) . � W 1 , W 2 , W 3 : VB n − → Aut ( F n + 1 ) [ Proposition. ]

  34. w 1 , w 2 , w 3 : B n − → Aut ( F n ) . � W 1 , W 2 , W 3 : VB n − → Aut ( F n + 1 ) [ Proposition. ] � Let L v = � β v , β v ∈ VB n , k = 1 , 2 , 3 , G k ( L v ) = � x 1 , . . . , x n , y � W k ( β v )( x i ) = x i , i = 1 , 2 , . . . , n � .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend