garside structure and dehornoy ordering of braid groups
play

Garside structure and Dehornoy ordering of braid groups for - PowerPoint PPT Presentation

Garside structure and Dehornoy ordering of braid groups for topologist (mini-course II) Tetsuya Ito Combinatorial Link Homology Theories, Braids, and Contact Geometry Aug, 2014 Tetsuya Ito Braid calculus Aug , 2014 1 / 64 Part II: The


  1. Dehornoy’s ordering: geometric view (2) ( ⇐ ) If β (Γ) moves the left direcition of Γ, we can simplify β (Γ) by applying braid containing no σ 1 : � 1 � 1 � � 1 2 Simplify urve diagram � 1 Only � 1 an app ea r Tetsuya Ito Braid calculus Aug , 2014 15 / 64

  2. Dehornoy’s ordering: geometric view (3) Application Geometric point of view yields: ▶ A simple proof of Property S. Tetsuya Ito Braid calculus Aug , 2014 16 / 64

  3. Dehornoy’s ordering: geometric view (3) Application Geometric point of view yields: ▶ A simple proof of Property S. ▶ Algorithm to determine 1 < D β or not (just try to write curve diagram !) Tetsuya Ito Braid calculus Aug , 2014 16 / 64

  4. Dehornoy’s ordering: geometric view (3) Application Geometric point of view yields: ▶ A simple proof of Property S. ▶ Algorithm to determine 1 < D β or not (just try to write curve diagram !) ▶ Algorithm to find σ -positive representative word of β if 1 < D β Tetsuya Ito Braid calculus Aug , 2014 16 / 64

  5. Dehornoy’s ordering: geometric view (3) Application Geometric point of view yields: ▶ A simple proof of Property S. ▶ Algorithm to determine 1 < D β or not (just try to write curve diagram !) ▶ Algorithm to find σ -positive representative word of β if 1 < D β Important prospect A reasonable procedure of simplifying curve diagrams yields a connection of topology/geometry of braids and algebraic structure (Garside normal form, Dehornoy ordering) of braid groups. A curve diagram is a deep and important object than our first impression (although it is very simple) !!! (There might be other nice property of braids read from curve diagrams...) Tetsuya Ito Braid calculus Aug , 2014 16 / 64

  6. Dehornoy’s ordering: More schematic geometric view We want to remove “up to isotopy” in curve diagram definition of < D . How to put two curves on D n so that they intersect minimally (i.e. find the “best” isotopy class)? Tetsuya Ito Braid calculus Aug , 2014 17 / 64

  7. Dehornoy’s ordering: More schematic geometric view We want to remove “up to isotopy” in curve diagram definition of < D . How to put two curves on D n so that they intersect minimally (i.e. find the “best” isotopy class)? Solution The hyperbolic geometry is useful to give the “ best” representative of curves: Equip hyperbolic structure of D n . Then, Tetsuya Ito Braid calculus Aug , 2014 17 / 64

  8. Dehornoy’s ordering: More schematic geometric view We want to remove “up to isotopy” in curve diagram definition of < D . How to put two curves on D n so that they intersect minimally (i.e. find the “best” isotopy class)? Solution The hyperbolic geometry is useful to give the “ best” representative of curves: Equip hyperbolic structure of D n . Then, ▶ By isotopy, one can realize every non-trivial curve as geodesic. ▶ Two geodesics on hyperbolic surface minimally intersect. ▶ In the universal covering of D n ⊂ H 2 , geodesic is easy to see: if we put the base point in the center of disc model of H 2 , geodesic is just a straight line. Tetsuya Ito Braid calculus Aug , 2014 17 / 64

  9. Dehornoy’s ordering: More schematic geometric view (Figure borrowed from Short-Wiest’s paper) Tetsuya Ito Braid calculus Aug , 2014 18 / 64

  10. Nielsen-Thurston type ordering Using hyperbolic geometry construction, we can generalize the Dehornoy ordering for mapping class group of surface with non-empty boundary: S : Hyperbolic Surface with non-empty geodesic boundary H 2 ⊃ � π S → S : Universal covering By considering the lifted action on boundary at infinity (which does not depend on a choice of representative homeomorphism) we get an injective homomorphism Θ : MCG ( S ) → Homeo + ( R ) called the Nielsen-Thurston map. Remark The map Θ is not canonical – it may depends on various intermediate choices (hyperbolic metric etc...) Tetsuya Ito Braid calculus Aug , 2014 19 / 64

  11. Nielsen-Thurston type ordering Definition Take an ordered, countable dense subset { x 1 , x 2 , . . . } of R . For ϕ, ψ ∈ MCG ( S ), define { [Θ( ϕ )] ( x i ) = [Θ( ψ )] ( x i ) i = 1 , . . . , j − 1 ϕ < ψ ⇐ ⇒ ∃ j s . t . [Θ( ϕ )] ( x j ) < [Θ( ψ )] ( x j ) This defines a left ordering of MCG ( S ), called the Nielsen-Thurston type orderings. Remark The Dehornoy ordering is regarded as a special one of the Nielsen-Thurston type ordering. Tetsuya Ito Braid calculus Aug , 2014 20 / 64

  12. II -2 Technique to compute Dehornoy ordering (handle reduction) Tetsuya Ito Braid calculus Aug , 2014 21 / 64

  13. Handle reduction How to determine 1 < D β or not ? Observation σ 1 σ 2 σ − 1 is not σ -positive word, but we can rewrite 1 σ 1 σ 2 σ − 1 = σ − 1 2 σ 1 σ 2 ( σ 1 -positive word) 1 2 σ − 1 = σ − 1 More generally, σ 1 σ k 2 σ k 1 σ 2 1 Tetsuya Ito Braid calculus Aug , 2014 22 / 64

  14. Handle reduction How to determine 1 < D β or not ? Observation σ 1 σ 2 σ − 1 is not σ -positive word, but we can rewrite 1 σ 1 σ 2 σ − 1 = σ − 1 2 σ 1 σ 2 ( σ 1 -positive word) 1 2 σ − 1 = σ − 1 More generally, σ 1 σ k 2 σ k 1 σ 2 1 Idea: By modifying the word of the form σ 1 ( σ 1 -free word) σ − 1 (this is a bad 1 sequence) we may get σ 1 -positive/negative word. Tetsuya Ito Braid calculus Aug , 2014 22 / 64

  15. Handle reduction Definition A permitted handle of a braid word w is a subword of the form h = σ ± 1 2 V k σ ∓ 1 1 V 0 σ ε 2 V 1 σ ε 2 · · · σ ε 1 where ε ∈ {± 1 } and V i is a word containing no σ ± 1 1 , σ ± 1 2 . Not permitted Permitted inner handle same sign Tetsuya Ito Braid calculus Aug , 2014 23 / 64

  16. Handle reduction Definition The handle reduction of a permitted handle h in a braid word w is replacement h = σ ± 1 1 V 0 σ ε 2 V 1 σ ε 2 · · · σ ε 2 V k σ ∓ 1 1 with red ( h ) = V 0 ( σ ∓ 1 1 σ ± 1 2 ) V 1 · · · ( σ ∓ 1 1 σ ± 1 2 σ ε 2 σ ε 2 ) V k permitted handle handle reduction Tetsuya Ito Braid calculus Aug , 2014 24 / 64

  17. Handle reduction ▶ A Handle reduction converts non σ -positive/negative subword h into a σ -positive/negative subword. Tetsuya Ito Braid calculus Aug , 2014 25 / 64

  18. Handle reduction ▶ A Handle reduction converts non σ -positive/negative subword h into a σ -positive/negative subword. ▶ Handle reduction may create new handles (and the length of words may increase) – so it is unclear whether handle reduction makes braid in a better form. Are we approaching σ -positive/negative word ? Tetsuya Ito Braid calculus Aug , 2014 25 / 64

  19. Handle reduction ▶ A Handle reduction converts non σ -positive/negative subword h into a σ -positive/negative subword. ▶ Handle reduction may create new handles (and the length of words may increase) – so it is unclear whether handle reduction makes braid in a better form. Are we approaching σ -positive/negative word ? ▶ Nevertheless, handle reduction eventually yields a σ -positive or σ -negative word: Tetsuya Ito Braid calculus Aug , 2014 25 / 64

  20. Handle reduction ▶ A Handle reduction converts non σ -positive/negative subword h into a σ -positive/negative subword. ▶ Handle reduction may create new handles (and the length of words may increase) – so it is unclear whether handle reduction makes braid in a better form. Are we approaching σ -positive/negative word ? ▶ Nevertheless, handle reduction eventually yields a σ -positive or σ -negative word: Theorem (Dehornoy ’97) For a given n -braid word of length ℓ , after at most 2 n 4 ℓ (exponential) times of handle reductions, we arrive at a σ -positive or σ -negative word. The proof is not so simple, because we have no good notion of complexity which decrease by applying handle reduction. Tetsuya Ito Braid calculus Aug , 2014 25 / 64

  21. Example of handle reduction Let us use handle reduction to find σ -positive or σ -negative word for σ 1 σ 2 σ 3 σ 2 σ − 1 1 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 26 / 64

  22. Example of handle reduction Let us use handle reduction to find σ -positive or σ -negative word for σ 1 σ 2 σ 3 σ 2 σ − 1 1 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Find a handle: σ 1 σ 2 σ 3 σ 2 σ − 1 1 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 26 / 64

  23. Example of handle reduction Let us use handle reduction to find σ -positive or σ -negative word for σ 1 σ 2 σ 3 σ 2 σ − 1 1 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Find a handle: σ 1 σ 2 σ 3 σ 2 σ − 1 1 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Handle reduction (get longer word!): σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 26 / 64

  24. Example of handle reduction Let us search next handle for σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 27 / 64

  25. Example of handle reduction Let us search next handle for σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . By looking for the pattern σ 1 · · · σ − 1 1 , we find: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 27 / 64

  26. Example of handle reduction Let us search next handle for σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . By looking for the pattern σ 1 · · · σ − 1 1 , we find: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . This handle is not permitted – we look for inner handles σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 27 / 64

  27. Example of handle reduction Let us search next handle for σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . By looking for the pattern σ 1 · · · σ − 1 1 , we find: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . This handle is not permitted – we look for inner handles σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ 2 σ − 1 2 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . and do handle reduction (this is just a cancellation): σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 27 / 64

  28. Example of handle reduction Handel reduction again: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 28 / 64

  29. Example of handle reduction Handel reduction again: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 28 / 64

  30. Example of handle reduction Handel reduction again: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Iterate similar procedure: Tetsuya Ito Braid calculus Aug , 2014 28 / 64

  31. Example of handle reduction Handel reduction again: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Iterate similar procedure: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 28 / 64

  32. Example of handle reduction Handel reduction again: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Iterate similar procedure: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ 2 σ 3 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 28 / 64

  33. Example of handle reduction Handel reduction again: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Iterate similar procedure: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ 2 σ 3 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ 2 σ 3 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 28 / 64

  34. Example of handle reduction Handel reduction again: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ 1 σ − 1 1 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . Iterate similar procedure: σ − 1 2 σ 1 σ 2 σ 3 σ − 1 2 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ 2 σ 3 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ 2 σ 3 σ − 1 2 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ 3 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 28 / 64

  35. Example of handle reduction σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ 3 σ − 1 3 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 29 / 64

  36. Example of handle reduction σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ 3 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 29 / 64

  37. Example of handle reduction σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ 3 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 29 / 64

  38. Example of handle reduction σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ 3 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 29 / 64

  39. Example of handle reduction σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ 3 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ − 1 1 . Tetsuya Ito Braid calculus Aug , 2014 29 / 64

  40. Example of handle reduction σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ 3 σ − 1 3 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ 2 σ − 1 2 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ − 1 1 . σ − 1 2 σ 1 σ − 1 3 σ − 1 3 σ − 1 1 . σ − 1 2 σ − 1 3 σ − 1 3 . We eventually find σ -negative word (so, word without handles). Tetsuya Ito Braid calculus Aug , 2014 29 / 64

  41. Handle reduction Experimental fact Among known algorithms to compute the Dehornoy ordering, a handle reduction method is the best: ▶ It is easy to do (even by hands and to implement computor program). ▶ It converges in linear time (and will produce a short σ -positive/negative representatives). Tetsuya Ito Braid calculus Aug , 2014 30 / 64

  42. Handle reduction Experimental fact Among known algorithms to compute the Dehornoy ordering, a handle reduction method is the best: ▶ It is easy to do (even by hands and to implement computor program). ▶ It converges in linear time (and will produce a short σ -positive/negative representatives). Note that in the previous theorem only gives an exponential upper bound 2 4 n ℓ . This suggests our current understanding of handle reduction is very poor . Tetsuya Ito Braid calculus Aug , 2014 30 / 64

  43. Handle reduction Question 1. Prove handle reduction converges very fast (conjectually in linear time, but polynomial time bound is still interesting) 2. Give a topological/geometric prospect of handle reduction. What is handle “reduction” reducing ? 3. Generalize a theory of handle reduction technique for other groups. (Note: handle reduction can be seen as standard reducing operation xx − 1 �→ ε , which is basic in the free group. There might be a good notion and properties of “handle-reduced” words in more general group.) A handle reduction seems to reflect unknown combinatorics and prospects in braid groups... Tetsuya Ito Braid calculus Aug , 2014 31 / 64

  44. II-2 Application to (contact) topology (1): Knot theory Tetsuya Ito Braid calculus Aug , 2014 32 / 64

  45. The Dehornoy ordering The Dehornoy ordering < D is fundamental, but quite interesting object related to various aspects of the braid groups: ▶ Combinatorics ( σ -positive words) ▶ Topology (Curve diagram) ▶ Geometry (Hyperbolic geometry, Nielsen-Thruston action) Tetsuya Ito Braid calculus Aug , 2014 33 / 64

  46. The Dehornoy ordering The Dehornoy ordering < D is fundamental, but quite interesting object related to various aspects of the braid groups: ▶ Combinatorics ( σ -positive words) ▶ Topology (Curve diagram) ▶ Geometry (Hyperbolic geometry, Nielsen-Thruston action) ▶ Set-theory (distribuitivive operations on sets) ▶ Surface triangulation (Dynnikov coordinate, Mosher’s normal form of MCG) ▶ Possibly more unknown prospects...... Tetsuya Ito Braid calculus Aug , 2014 33 / 64

  47. The Dehornoy ordering The Dehornoy ordering < D is fundamental, but quite interesting object related to various aspects of the braid groups: ▶ Combinatorics ( σ -positive words) ▶ Topology (Curve diagram) ▶ Geometry (Hyperbolic geometry, Nielsen-Thruston action) ▶ Set-theory (distribuitivive operations on sets) ▶ Surface triangulation (Dynnikov coordinate, Mosher’s normal form of MCG) ▶ Possibly more unknown prospects...... Moreover, in a theory of left-ordering of groups the Dehornoy ordering is a source of various important examples. Tetsuya Ito Braid calculus Aug , 2014 33 / 64

  48. The Dehornoy ordering Natural question is: Question Can we use Dehornoy ordering to study topology/geometry ? Naive speculation The Dehornoy ordering < D can be seen as a complexity of braids. ⇒ < D may also be regarded as a complexity of geometric object (knots and links, for example) arising from braids. Tetsuya Ito Braid calculus Aug , 2014 34 / 64

  49. The Dehornoy ordering Natural question is: Question Can we use Dehornoy ordering to study topology/geometry ? Naive speculation The Dehornoy ordering < D can be seen as a complexity of braids. ⇒ < D may also be regarded as a complexity of geometric object (knots and links, for example) arising from braids. Surprisingly, this speculation is true, and Conclusion If K is a closure of a braid β which is sufficiently complicated (with respect to < D ), then property of K is directly read from β . Tetsuya Ito Braid calculus Aug , 2014 34 / 64

  50. The Dehornoy floor of braids Definition The Dehornoy floor of braid β is an integer [ β ] D satisfying ∆ 2[ β D ] ≤ D β < D ∆ 2[ β D ]+2 The Dehornoy floor is regarded as a numerical complecity of braids measured by the Dehornoy ordering. Tetsuya Ito Braid calculus Aug , 2014 35 / 64

  51. The Dehornoy floor of braids Definition The Dehornoy floor of braid β is an integer [ β ] D satisfying ∆ 2[ β D ] ≤ D β < D ∆ 2[ β D ]+2 The Dehornoy floor is regarded as a numerical complecity of braids measured by the Dehornoy ordering. Lemma 1. The Dehornoy floor map [ ] D : B n → Z is a quasi-morphism of defect one: | [ αβ ] D − [ α ] D − [ β ] D | ≤ 1 2. If α and β are conjugate, | [ α ] D − [ β ] D | ≤ 1. Tetsuya Ito Braid calculus Aug , 2014 35 / 64

  52. The Dehornoy floor of braids Proposition If the closure of an n -braid β admits destabilization (i.e. β is conjugate to ασ ± 1 for α ∈ B n − 1 ), then | [ β ] D | ≤ 1. n Tetsuya Ito Braid calculus Aug , 2014 36 / 64

  53. The Dehornoy floor of braids Proposition If the closure of an n -braid β admits destabilization (i.e. β is conjugate to ασ ± 1 for α ∈ B n − 1 ), then | [ β ] D | ≤ 1. n Proof: Assume β is conjugate to ασ ± 1 n − 1 , so is conjugate to β ′ = ∆( ασ ± 1 n − 1 )∆ − 1 = { word over σ ± 1 2 , . . . , σ n − 1 } σ ± 1 1 . Then, ∆ ± 2 β ′ = { word over σ ± 1 (∆ ± 2 σ ± 1 2 , . . . , σ n − 1 } · 1 ) � �� � σ 1 − positive/negative So ∆ − 2 < D β ′ < D ∆ 2 . Tetsuya Ito Braid calculus Aug , 2014 36 / 64

  54. The Dehornoy floor of braids By the same argument, Proposition 1. If the closure of an n -braid β admits exchange move then | [ β ] D | ≤ 1. 2. If the closure of an n -braid β admits flype then | [ β ] D | ≤ 2. A B A B Exchange Move A A C C B B Flype Tetsuya Ito Braid calculus Aug , 2014 37 / 64

  55. The Dehornoy floor of braids These “template moves” geometrically appears in the theory of Birman-Menasco’s braid foliation theory (cf. LaFountain’s lecture) and the Dehornoy ordering is related to the braid foliation. Key Proposition L = � β :Closed braid F ∈ S 3 − L : Seifert/incompressible closed surface. If the braid foliation of F has a positive vertex v with p positive saddles and n negative saddles around v , then − n ≤ [ β ] D ≤ p . 3 p ositive saddles 2 negative saddles v ) � 2 � [ � ℄ � 3 D Tetsuya Ito Braid calculus Aug , 2014 38 / 64

  56. Dehornoy floor and knot theory By using the braid foliation theory, we have several close connections between the Dehornoy’s ordering (recall it is defined by algebraic way !!) and knot theory: Proposition (Malyutin-Netsvetaev’04, I.) 1. If | [ β ] D | > 1, then � β is prime, non-split, non-trivial link. 2. For n ∈ { 2 , 3 , . . . , } there exists a number r ( n ) ∈ Z such that: The closure of two n -braids α and β with | [ α ] D | , | [ β ] D | ≥ r ( n ) represent the same link if and only if α and β are conjugate. (Moreover, the braid index of � α = n ). Surprising consequence If the Dehornoy floor is sufficiently large, Algebraic link problem = conjugacy problem of braids!! Tetsuya Ito Braid calculus Aug , 2014 39 / 64

  57. Dehornoy floor and knot theory More direct connections for Dehornoy ordering and knots: Theorem (I, ’12) 1. Let β ∈ B n . If g ( � β ) the genus of a knot � β , | [ β ] D | ≤ 4 g ( K ) n + 2 + 3 2 n + 2 − 2 ≤ g ( K ) + 1 . Thus, a complicated braid (with respect to the Dehornoy ordering) yields a complicated knot (with respect to topology – Thurston norm) 2. Assume that | [ β ] D | ≥ 2. Then,    torus knot  periodic � β is a satellite knot ⇐ ⇒ β is reducible   hyperbolic knot pseudo-Anosov Tetsuya Ito Braid calculus Aug , 2014 40 / 64

  58. � � � � Further application: quantum invariants Recall the definitions of quantum invariants: U q ( g ): Quantum enveloping algebra of semi-simple Lie algebra g V : U q ( g )-module(s) Surgery Closure � { (Oriented) Links } { Braids } { Closed 3-manifolds } Quantum Quantum Quantum ρ V representation invariant invariant 2 π √− 1 q = e “ Trace ′′ � C [ q , q − 1 ] N � C GL ( V ⊗ n ) Take linear sums ρ V : B n → GL ( V ) is called quantum representation. Tetsuya Ito Braid calculus Aug , 2014 41 / 64

  59. Big open problem in knot theory Open problem Which quantum invariants detect the unknot ? Does Jones polynomial (“the simplest” quantum invariant) detect the unknot ? Tetsuya Ito Braid calculus Aug , 2014 42 / 64

  60. Big open problem in knot theory Open problem Which quantum invariants detect the unknot ? Does Jones polynomial (“the simplest” quantum invariant) detect the unknot ? From the construction of quantum invariants, we have Observations (Bigelow) If an n -braid α ∈ Ker ρ V , then for any β ∈ B n Q V ( � αβ ) = Q V ( � β ) ⇒ Quantum representation ρ V is not faithful, then Q V is not strong – it fails to detect the unknot. Is it true? The link � αβ may be the same as � β ... Tetsuya Ito Braid calculus Aug , 2014 42 / 64

  61. Closed braids via normal subgroups Bigelow’s speculation is true: Theorem (I.) Let N be the non-trivial, non-central normal subgroup of B n . Then for any β ∈ B n , the set of knots (and links) { � αβ | α ∈ N } contains infinitely may distinct (hyperbolic) knots. (i.e. normal subgroup of B n produces infinitely many knots.) It sounds “obvious”, but how to prove ? ▶ We cannot use (easy-to-calculate) invariant to distinguish knots !!! ▶ We do not know an element in N explicitly. Tetsuya Ito Braid calculus Aug , 2014 43 / 64

  62. Consequences One can attack faithfulness of knot invariants via braid group representations: Corollary (I.) 1. If quantum representations ρ i : B n → GL ( V ⊗ n ) ( i = 1 , . . . , k ) are not i faithful, for any knot type K , there exists infinitely many mutually different, (hyperbolic) knot K 1 , K 2 , . . . such that Q V i ( K ) = Q V i ( K ∗ ) ( ∗ = 1 , 2 , . . . ) for all i = 1 , . . . , k . 2. (Bigelow) If the 4-strand (reduced) Burau representation ρ 4 : B 4 → GL (3 , Z [ q ± 1 ]) is not faithful, then there exists a non-trivial knot with trivial Jones polynomial. Tetsuya Ito Braid calculus Aug , 2014 44 / 64

  63. Proof of Theorem Surprisingly, theorem is a consequence of a purely algebraic statement for the Dehornoy ordering. Theorem ′ (I.) A non-trivial normal subgroup N of B n is unbounded with respect to the Dehornoy ordering < D : For any β ∈ B n , there exists α ∈ N such that α − 1 < D β < D α . Theorem ′ ⇒ Theorem ▶ If N is unbounded, so is the set { βα | α ∈ N } for any β . (Moreover, it contains infinitely many pseudo-Anosov elements). ▶ Inequality of the Dehornoy floor and knot genus (previous theorem) shows the set of knots { � βα | α ∈ N } is infinite (because it contains arbitrary large genus knot.) Tetsuya Ito Braid calculus Aug , 2014 45 / 64

  64. II-4: Application (2): FDTC and contact geometry Tetsuya Ito Braid calculus Aug , 2014 46 / 64

  65. Fractional Dehn twist coefficient S : surface with non-empty boundary C ⊂ ∂ S : connected component of ∂ S . Using Nielsen-Thurston theory, Honda-Kazez-Mati´ c defined the fractional Dehn twist coefficients (FDTC) (with respect to C ) c ( ϕ, C ) ∈ Q : Tetsuya Ito Braid calculus Aug , 2014 47 / 64

  66. Fractional Dehn twist coefficient S : surface with non-empty boundary C ⊂ ∂ S : connected component of ∂ S . Using Nielsen-Thurston theory, Honda-Kazez-Mati´ c defined the fractional Dehn twist coefficients (FDTC) (with respect to C ) c ( ϕ, C ) ∈ Q : 1. Periodic case: Take N > 0 so that ϕ N = T M C · · · (Dehn twsits along other boundaries). Then, c ( ϕ, C ) = M N (we regard ϕ is rotation by 2 π M near C ) N Tetsuya Ito Braid calculus Aug , 2014 47 / 64

  67. Fractional Dehn twist coefficient 2. Pseudo-Anosov case: Consider a pseudo-Anosov homormophism representative. Using the singular leaves of its invariant foliation near C , in the neighborhood of C we identify ϕ with the rotation by 2 π M N , and define c ( ϕ, C ) = M N 3. Reducible case: Consider irreducible component of ϕ containing C . Tetsuya Ito Braid calculus Aug , 2014 48 / 64

  68. Alternative definition of FDTC Let us use a Nielsen-Thurston map Θ : MCG ( S ) → Homeo + ( R ) . T C is central and we may normalize Θ so that Θ( T C ) : x �→ x + 1: i.e., � Homeo + ( S 1 ) Θ : MCG ( S ) → � f : R → R | f : R / Z = S 1 → S 1 } ). Consider the Homeo + ( S 1 ) = { � (Here translation number [Θ( ψ N )](0) − 0 � Homeo + ( S 1 ) → R , τ : τ ( ψ ) = lim . N N →∞ Tetsuya Ito Braid calculus Aug , 2014 49 / 64

  69. Alternative definition of FDTC Let us use a Nielsen-Thurston map Θ : MCG ( S ) → Homeo + ( R ) . T C is central and we may normalize Θ so that Θ( T C ) : x �→ x + 1: i.e., � Homeo + ( S 1 ) Θ : MCG ( S ) → � f : R → R | f : R / Z = S 1 → S 1 } ). Consider the Homeo + ( S 1 ) = { � (Here translation number [Θ( ψ N )](0) − 0 � Homeo + ( S 1 ) → R , τ : τ ( ψ ) = lim . N N →∞ Theorem (I-Kawamuro) c ( ϕ, C ) = τ ◦ Θ( ϕ ) . Tetsuya Ito Braid calculus Aug , 2014 49 / 64

  70. Relation to the Dehornoy floor Let us consider a normalized Nielsen-Thurston map for braids, � Homeo + ( S 1 ) Θ : B n → Θ(∆ 2 ) : x �→ x + 1. Moreover, we may further arrange so that α < D β ⇐ ⇒ [Θ( α )](0) < [Θ( β )](0) . Then, the translation number is nothing but the “stable” Dehornoy floor: Theorem (I-Kawamuro) [ β N ] D c ( ϕ, C ) = lim N N →∞ Tetsuya Ito Braid calculus Aug , 2014 50 / 64

  71. Application to contact geometry Summary FDTC = generalization of the Dehornoy floor In particular, we have: Tetsuya Ito Braid calculus Aug , 2014 51 / 64

  72. Application to contact geometry Summary FDTC = generalization of the Dehornoy floor In particular, we have: ▶ Fast computation of FDTC without knowing Nielsen-Thurston type. (For the braid group, we have fast (conjectured to be linear time) algorithm to compute the Dehornoy ordering. ) Tetsuya Ito Braid calculus Aug , 2014 51 / 64

  73. Application to contact geometry Summary FDTC = generalization of the Dehornoy floor In particular, we have: ▶ Fast computation of FDTC without knowing Nielsen-Thurston type. (For the braid group, we have fast (conjectured to be linear time) algorithm to compute the Dehornoy ordering. ) ▶ Relationship between Nielsen-Thurston ordering of Mapping class groups and contact 3-manifolds. Tetsuya Ito Braid calculus Aug , 2014 51 / 64

  74. Application to contact geometry Viewing FDTC as generalization of Dehornoy floor (and the theory of Open book foliation) allows us to generalize theorem for Dehornoy ordering and knot theory for FDTC and (contact) 3-manifolds. Theorem (I-Kawamuro) Let ( S , ϕ ) be an open book decomposition of (contact) 3-manifold ( M , ξ ). 1. If | c ( ϕ, C ) | ≥ 4 for all boundary of S , then   Seifert-fibered manifold periodic   M is a toroidal manifold ⇐ ⇒ ϕ is reducible   hyperbolic manifold pseudo-Anosov 2. If S is planar and c ( ϕ, C ) > 1 for all boundary of S , then ξ is a tight contact structure on M . Tetsuya Ito Braid calculus Aug , 2014 52 / 64

  75. II-5: The Dehornoy ordering and Garside theory Tetsuya Ito Braid calculus Aug , 2014 53 / 64

  76. Garside theory technique to compute Dehornoy’s ordering: Alternating normal form Question Can we use Garside structure to study/compute normal form ? Tetsuya Ito Braid calculus Aug , 2014 54 / 64

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend