an anisotropic continuum damage model for concrete
play

An anisotropic continuum damage model for concrete Saba Tahaei - PowerPoint PPT Presentation

An anisotropic continuum damage model for concrete Saba Tahaei Yaghoubi 1 , Juha Hartikainen 1 , Kari Kolari 2 , Reijo Kouhia 3 1 Aalto University, Department of Civil and Structural Engineering 2 VTT 3 Tampere University of Technology, Department


  1. An anisotropic continuum damage model for concrete Saba Tahaei Yaghoubi 1 , Juha Hartikainen 1 , Kari Kolari 2 , Reijo Kouhia 3 1 Aalto University, Department of Civil and Structural Engineering 2 VTT 3 Tampere University of Technology, Department of Mechanical Engineering and Industrial Systems 4 June 2015

  2. 1 Introduction 2 Ottosen’s model Outline 3 Thermodynamic 4 Specific model 5 Results 1 Introduction 6 Conclusions 2 Ottosen’s 4 parameter model 3 Thermodynamic formulation 4 Specific model 5 Some results 6 Conclusions and future work Anisotropic damage – 4.6.2015 2/18

  3. 1 Introduction 1 Introduction 2 Ottosen’s model 3 Thermodynamic 4 Specific model 2 Ottosen’s 4 parameter model 5 Results 6 Conclusions 3 Thermodynamic formulation 4 Specific model 5 Some results 6 Conclusions and future work Anisotropic damage – 4.6.2015 3/18

  4. 1 Introduction 2 Ottosen’s model Introduction 3 Thermodynamic 4 Specific model 5 Results The non-linear behaviour of 6 Conclusions quasi-brittle materials under loading is mainly due to damage and micro-cracking rather than plastic deformation. Damage of such materials can be modelled using scalar, vector or higher order damage tensors. Failure of rock-like materials in tension is mainly due to the growth of the most critical micro-crack Failure of rock-like materials in compression can be seen as a cooperative action of a distributed http://mps-il.com microcrack array Anisotropic damage – 4.6.2015 4/18

  5. 1 Introduction 1 Introduction 2 Ottosen’s model 3 Thermodynamic 4 Specific model 2 Ottosen’s 4 parameter model 5 Results 6 Conclusions 3 Thermodynamic formulation 4 Specific model 5 Some results 6 Conclusions and future work Anisotropic damage – 4.6.2015 5/18

  6. 1 Introduction 2 Ottosen’s model Ottosen’s 4 parameter model 3 Thermodynamic 4 Specific model 5 Results 6 Conclusions AJ 2 � + Λ J 2 + BI 1 − σ c = 0 , σ c � k 1 cos[ 1 3 arccos( k 2 cos 3 θ )] if cos 3 θ � 0 Λ = cos 3 θ ≤ 0 . k 1 cos[ 1 3 π − 1 3 arccos( − k 2 cos 3 θ )] if √ cos 3 θ = 3 3 J 3 , : Lode angle 2 J 3 / 2 2 σ c : the uniaxial compressive strength I 1 = tr σ : the first invariant of the stress tensor 3 tr s 3 : deviatoric invariants J 2 = 1 2 s : s , J 3 = det s = 1 A, B, k 1 , k 2 : material constants Anisotropic damage – 4.6.2015 6/18

  7. 1 Introduction 2 Ottosen’s model Meridian plane & plane stress 3 Thermodynamic 4 Specific model 5 Results 6 Conclusions σ 2 /f c σ e /f c θ = 60 ◦ σ 1 /f c 7 − 1 . 4 − 1 . 2 − 1 . 0 − 0 . 8 − 0 . 6 − 0 . 4 − 0 . 2 6 − 0 . 2 5 − 0 . 4 θ = 0 ◦ θ = 0 ◦ 4 − 0 . 6 3 − 0 . 8 2 − 1 . 0 1 σ m /f c − 1 . 2 − 5 − 4 − 3 − 2 − 1 0 1 − 1 . 4 Green line = Mohr-Coulomb with tension cut-off Blue line = Ottosen’s model Red line = Barcelona model Anisotropic damage – 4.6.2015 7/18

  8. 1 Introduction 2 Ottosen’s model Deviatoric plane 3 Thermodynamic 4 Specific model 5 Results 6 Conclusions σ 1 σ 1 σ 2 σ 3 σ 2 σ 3 π − plane σ m = − f c Green line = Mohr-Coulomb with tension cut-off Blue line = Ottosen’s model Red line = Barcelona model Anisotropic damage – 4.6.2015 8/18

  9. 1 Introduction 1 Introduction 2 Ottosen’s model 3 Thermodynamic 4 Specific model 2 Ottosen’s 4 parameter model 5 Results 6 Conclusions 3 Thermodynamic formulation 4 Specific model 5 Some results 6 Conclusions and future work Anisotropic damage – 4.6.2015 9/18

  10. 1 Introduction 2 Ottosen’s model Thermodynamic formulation 3 Thermodynamic 4 Specific model 5 Results Two potential functions 6 Conclusions ψ c = ψ c ( S ) S = ( σ , D , κ ) Specific Gibbs free energy ψ c − ˙ γ = ρ 0 ˙ σ : ǫ . γ � 0 . Clausius-Duhem inequality ϕ ( W ; S ) W = ( Y , K ) Dissipation potential γ ≡ B Y : Y + B K K ∂ψ c ∂ψ c Y = ρ 0 K = − ρ 0 ∂κ , Define ∂ D ∂ψ c � � � � ˙ ρ 0 ∂ σ − ǫ : ˙ σ + D − B Y : Y + ( − ˙ κ − B K ) K = 0 . ∂ψ c ˙ ǫ = ρ 0 ∂ σ , D = B Y , κ = − B K , ˙ Anisotropic damage – 4.6.2015 10/18

  11. 1 Introduction 1 Introduction 2 Ottosen’s model 3 Thermodynamic 4 Specific model 2 Ottosen’s 4 parameter model 5 Results 6 Conclusions 3 Thermodynamic formulation 4 Specific model 5 Some results 6 Conclusions and future work Anisotropic damage – 4.6.2015 11/18

  12. 1 Introduction 2 Ottosen’s model Specific model 3 Thermodynamic 4 Specific model 5 Results Specific Gibbs free energy 6 Conclusions ρ 0 ψ c ( σ , D , κ ) = 1 + ν − ν tr σ 2 + tr( σ 2 D ) 3 tr D )(tr σ ) 2 + ψ c ,κ ( κ ) � � 2 E (1 + 1 2 E Elastic domain Σ = { ( Y , K ) | f ( Y , K ; σ ) � 0 } where the damage surface is defined as f ( Y , K ; σ ) = A ˜ J 2 � ˜ + Λ J 2 + BI 1 − ( σ c0 + K ) = 0 , σ c0 Anisotropic damage – 4.6.2015 12/18

  13. 1 Introduction 2 Ottosen’s model Invariants in terms of Y 3 Thermodynamic 4 Specific model 5 Results 6 Conclusions 1 ˜ 6 (1 − 2 ν )(tr σ ) 2 � � E tr Y − 1 J 2 = 1 + ν 2 ˜ E [tr( σY ) − tr σ tr Y ] + 1 9 (1 − 2 ν )(tr σ ) 3 � J 3 = � 3(1 + ν ) ϕ ( Y , K ; σ ) = I Σ ( Y , K ; σ ) where I Σ is the indicator function � 0 if ( Y , K ) ∈ Σ I Σ ( Y , K ; σ ) = + ∞ if ( Y , K ) / ∈ Σ  ( 0 , 0) , if f ( Y , K α ; σ ) < 0 ,  ( B Y , B K ) = � λ ∂f λ ∂f � ˙ ∂ Y , ˙ , ˙ λ ≥ 0 , if f ( Y , K α ; σ ) = 0 ,  ∂K λ ∂f λ ∂f D = ˙ ˙ κ = − ˙ ∂ Y , ˙ ∂K Anisotropic damage – 4.6.2015 13/18

  14. 1 Introduction 1 Introduction 2 Ottosen’s model 3 Thermodynamic 4 Specific model 2 Ottosen’s 4 parameter model 5 Results 6 Conclusions 3 Thermodynamic formulation 4 Specific model 5 Some results 6 Conclusions and future work Anisotropic damage – 4.6.2015 14/18

  15. 1 Introduction 2 Ottosen’s model Some results 3 Thermodynamic 4 Specific model Uniaxial compression - ultimate compressive stength σ c = 32 . 8 MPa √ √ ( I 1 , √ J 2 ) = ( − 5 5 Results σ c0 = 18 MPa , σ t0 = 1 MPa , 3 σ c0 , 4 σ c0 / 2) 6 Conclusions A = 2 . 694 , B = 5 . 597 , k 1 = 19 . 083 , k 2 = 0 . 998 K = [ a 1 ( κ/κ max ) + a 2 ( κ/κ max ) 2 ] / [1 + b ( κ/κ max ) 2 ] a 1 = 85 . 3 MPa , a 2 = − 12 . 65 MPa , b = 0 . 7032 1.25 D 11 0.4 D 22 = D 33 1 0.3 Damage − σ 11 /σ c 0.75 0.2 0.5 model exp. 0.1 0.25 0 0 0 0.5 1 0 0.5 1 1.5 2 − ε 11 /ε c − ε 11 /ε c Experimental results from Kupfer et al. 1969. Anisotropic damage – 4.6.2015 15/18

  16. Young’s modulus and apparent Poisson’s ratio 1.2 1 Introduction 30 2 Ottosen’s model 1 3 Thermodynamic 0.8 E (GPa) − σ 11 /σ c 20 4 Specific model 0.6 Const. Exp. 5 Results 0.4 10 6 Conclusions 0.2 0 0 0 0.5 1 1.5 2 2.5 0 0.1 0.2 0.3 0.4 0.5 − ε 11 /ε c ν app Biaxial compression 0.012 D 11 = D 22 1.2 D 33 0.008 − σ 11 /σ c Damage 0.8 0.004 Eq. (43) 0.4 Eq. (44) Exp. 0 0 0 0.4 0.8 1.2 1.6 0 0.2 0.4 0.6 − ε 11 /ε c − ε 11 /ε c Anisotropic damage – 4.6.2015 16/18

  17. 1 Introduction 1 Introduction 2 Ottosen’s model 3 Thermodynamic 4 Specific model 2 Ottosen’s 4 parameter model 5 Results 6 Conclusions 3 Thermodynamic formulation 4 Specific model 5 Some results 6 Conclusions and future work Anisotropic damage – 4.6.2015 17/18

  18. 1 Introduction 2 Ottosen’s model Conclusions and future work 3 Thermodynamic 4 Specific model 5 Results 6 Conclusions Continuum damage formulation of the Ottosen’s 4 parameter model Can model axial splitting Implementation into FE software (own codes, ABAQUS) Development of directional hardening model Regularization by higher order gradients Thank you for your attention! Anisotropic damage – 4.6.2015 18/18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend