about the kohn dirac operator on cr manifolds
play

About the Kohn-Dirac operator on CR manifolds Felipe Leitner (Univ. - PowerPoint PPT Presentation

About the Kohn-Dirac operator on CR manifolds Felipe Leitner (Univ. Greifswald) Jurekfest University of Warsaw Faculty of Physics September 2019 Felipe Leitner Kohn-Dirac operator Strictly pseudo-convex boundaries Let = { < 0 }


  1. About the Kohn-Dirac operator on CR manifolds Felipe Leitner (Univ. Greifswald) Jurekfest University of Warsaw – Faculty of Physics September 2019 Felipe Leitner Kohn-Dirac operator

  2. Strictly pseudo-convex boundaries Let Ω = { ρ < 0 } ⊆ C m +1 ( m ≥ 1) be domain of holomorphy with defining C ∞ -function ρ ⇒ Levi form is positive semidefinite m ∂ρ � w ∈ T 10 ( ∂ Ω) L ( w , w ) = w j ¯ w k ≥ 0 , ∂ z j ∂ ¯ z k j , k =0

  3. Strictly pseudo-convex boundaries Let Ω = { ρ < 0 } ⊆ C m +1 ( m ≥ 1) be domain of holomorphy with defining C ∞ -function ρ ⇒ Levi form is positive semidefinite m ∂ρ � w ∈ T 10 ( ∂ Ω) L ( w , w ) = w j ¯ w k ≥ 0 , ∂ z j ∂ ¯ z k j , k =0 If L ( w , w ) > 0 for w � = 0 then H = T ( ∂ Ω) ∩ J ( T ( ∂ Ω)) is contact on ∂ Ω ◮ ( H , J ) is CR structure on M := ∂ Ω ◮ with contact 1-form θ = d ρ ◦ J ◮ C ⊗ H = H 10 ⊕ H 01 We call directions in transverse

  4. Abstract CR manifolds with pseudo-Hermitian form ( M 2 m +1 , H , J ) Let be strictly Ψ-convex CR manifold with adapted Ψ-Hermitian 1-form θ ( i.e. H = ker θ ) characteristic vector T = T θ on M ֒ →

  5. Abstract CR manifolds with pseudo-Hermitian form ( M 2 m +1 , H , J ) Let be strictly Ψ-convex CR manifold with adapted Ψ-Hermitian 1-form θ ( i.e. H = ker θ ) characteristic vector T = T θ on M ֒ → Tanaka-Webster connection ∇ θ on H and metric connection w.r.t. g θ = 1 2 d θ ( · , J · ) on H ◮ Tor ∇ ( X , Y ) = d θ ( X , Y ) T for X , Y ∈ H ◮ Webster torsion τ ( X ) = − 1 2 ([ T , X ] + J [ T , JX ]) ◮ U ( m ) is structure group of ∇ θ ◮

  6. Abstract CR manifolds with pseudo-Hermitian form ( M 2 m +1 , H , J ) Let be strictly Ψ-convex CR manifold with adapted Ψ-Hermitian 1-form θ ( i.e. H = ker θ ) characteristic vector T = T θ on M ֒ → Tanaka-Webster connection ∇ θ on H and metric connection w.r.t. g θ = 1 2 d θ ( · , J · ) on H ◮ Tor ∇ ( X , Y ) = d θ ( X , Y ) T for X , Y ∈ H ◮ Webster torsion τ ( X ) = − 1 2 ([ T , X ] + J [ T , JX ]) ◮ U ( m ) is structure group of ∇ θ ◮ ֒ → = scal θ ρ ric 4 m · d θ Ψ-Einstein condition θ

  7. CR spinors and Kohn-Dirac operator If c 1 ( K ) ≡ 0 mod 2, the transverse distribution ( H , g θ ) → M admits spinor bundle Σ( M ) with

  8. CR spinors and Kohn-Dirac operator If c 1 ( K ) ≡ 0 mod 2, the transverse distribution ( H , g θ ) → M admits spinor bundle Σ( M ) with inner product ( · , · ) L 2 on sections Γ o (Σ) ◮ ∇ Σ Tanaka-Webster spinor connection ◮ Σ( M ) = � m ( µ r = m − 2 r eigenvalues of id θ r =0 Σ µ r 2 ) ◮ Kohn-Dirac operator ◮ 2 m � e i · ∇ Σ D θ Φ = e i Φ , Φ ∈ Γ(Σ) j =1 ( e 1 , · · · , e 2 m ) ONB of transverse distribution ( H , g θ )

  9. CR spinors and Kohn-Dirac operator If c 1 ( K ) ≡ 0 mod 2, the transverse distribution ( H , g θ ) → M admits spinor bundle Σ( M ) with inner product ( · , · ) L 2 on sections Γ o (Σ) ◮ ∇ Σ Tanaka-Webster spinor connection ◮ Σ( M ) = � m ( µ r = m − 2 r eigenvalues of id θ r =0 Σ µ r 2 ) ◮ Kohn-Dirac operator ◮ 2 m � e i · ∇ Σ D θ Φ = e i Φ , Φ ∈ Γ(Σ) j =1 ( e 1 , · · · , e 2 m ) ONB of transverse distribution ( H , g θ ) Note: Eigenspinors D θ Φ = λ · Φ with λ � = 0 decompose to Φ = Φ µ r + Φ µ r +1 ∈ Γ(Σ µ r ⊕ Σ µ r +1 ) of type ( r , r + 1)

  10. Analytic properties of D θ Let ( M 2 m +1 , H , J , θ ) be closed spin CR manifold ( m ≥ 2) D θ is formally self-adjoint ◮ D θ is not elliptic ◮ the square ◮ D 2 θ : Γ(Σ µ r ) → Γ(Σ µ r ) is hypoelliptic for the non-extremal bundles r � = 0 , m spec ( D 2 θ ) is pure point spectrum ν i ◮ with ν i ≥ 0 and ν i → ∞ (Stadtm¨ uller ’17) eigenspaces E ν i are finite-dimensional for ν i > 0 ◮ in general, the space of harmonic spinors has dim H = ∞ ◮

  11. Example: The standard CR sphere The Euclidean ball B 1 (0) ⊆ C m +1 is convex boundary = sphere S 2 m +1 of radius 1, Ψ-Herm.form θ o = d ρ ◦ J , scal θ o ≡ 4 m ( m + 1) = const . as homogeneous space: S 2 m +1 = ˜ U ( m +1) / ˜ with ˜ U ( m ) U ( m +1) ⊆ Spin (2 m +2)

  12. Example: The standard CR sphere The Euclidean ball B 1 (0) ⊆ C m +1 is convex boundary = sphere S 2 m +1 of radius 1, Ψ-Herm.form θ o = d ρ ◦ J , scal θ o ≡ 4 m ( m + 1) = const . as homogeneous space: S 2 m +1 = ˜ U ( m +1) / ˜ with ˜ U ( m ) U ( m +1) ⊆ Spin (2 m +2) By Frobenius reciprocity we have L 2 (Σ) ∼ � = V γ ⊗ Hom ˜ U ( m ) ( V γ , Σ) γ where V γ = ( V γ ( a , b ) , π ) ( a , b ≥ 0) are the (relevant) irreducible representations of ˜ U ( m + 1)

  13. Spectrum of S 2 m +1 Parthasarathy-type formula scal θ o � � A ◦ π ∗ ( casimir u ( m +1) ) + · A D 2 8 θ o ( v ⊗ A ) = v ⊗ + 2 · A ◦ π ∗ ( T ) 2 + d θ o · A ◦ π ∗ ( T ) + 1 2 d θ 2 o · A for A ∈ Hom ˜ U ( m ) ( V γ ( a , b ) , Σ) with a , b ≥ 0

  14. Spectrum of S 2 m +1 Parthasarathy-type formula scal θ o � � A ◦ π ∗ ( casimir u ( m +1) ) + · A D 2 8 θ o ( v ⊗ A ) = v ⊗ + 2 · A ◦ π ∗ ( T ) 2 + d θ o · A ◦ π ∗ ( T ) + 1 2 d θ 2 o · A for A ∈ Hom ˜ U ( m ) ( V γ ( a , b ) , Σ) with a , b ≥ 0 This gives the eigenvalues � { λ = ± 4( m − r + a )( r + 1 + b ) | a , b ≥ 0 ∧ 0 ≤ r < m } with lower bound for the non-zero eigenvalues of type ( r , r + 1): scal θ o λ 2 ≥ 4( m − r )( r + 1) · 4 m ( m + 1)

  15. Schr¨ odinger-Lichnerowicz-type formula = Kohn-Dirac operator D θ − tr H ( ∇ Σ ◦ ∇ Σ ) ∆ Σ = spinor sub-Laplacian = ∆ 10 + ∆ 01 ( w.r.t. J on H ) − 1 i ∇ Σ 4 m ρ ric = θ · + 2 m (∆ 10 − ∆ 01 ) T

  16. Schr¨ odinger-Lichnerowicz-type formula = Kohn-Dirac operator D θ − tr H ( ∇ Σ ◦ ∇ Σ ) ∆ Σ = spinor sub-Laplacian = ∆ 10 + ∆ 01 ( w.r.t. J on H ) − 1 i ∇ Σ 4 m ρ ric = θ · + 2 m (∆ 10 − ∆ 01 ) T Lichnerowicz-type formula (Petit ’05): scal θ D 2 ∆ Σ d θ · ∇ Σ = + − θ T 4 � 1 − id θ � � 1 + id θ � D 2 ⇒ = ∆ 10 + ∆ 01 θ 2 m 2 m � � +1 scal θ + 1 md θ · ρ ric θ 4

  17. Lower bounds for eigenvalues Let ( M 2 m +1 , θ ), m ≥ 2, be closed with positive Ricci-form ρ ric > 0 θ Set scal min s o := 4 m ( m + 1) If Φ = Φ µ r + Φ µ r +1 is some ( r , r + 1)-eigenspinor for λ � = 0 then 2 m 2  for r = 0 , m − 1 m − 1    r = m 2 , m − 2  m ( m + 2) for   2    r = m − 1 λ 2 m ( m + 1) for ≥ s o · 2  2( r +1)( m − r ) m  0 < r < m − 2 for   m − r +1 2     2( r +1)( m − r ) m m  for 2 < r < m − 1 r

  18. Lower bounds for eigenvalues Let ( M 2 m +1 , θ ), m ≥ 2, be closed with positive Ricci-form ρ ric > 0 θ Set scal min s o := 4 m ( m + 1) If Φ = Φ µ r + Φ µ r +1 is some ( r , r + 1)-eigenspinor for λ � = 0 then 2 m 2  for r = 0 , m − 1 m − 1    r = m 2 , m − 2  m ( m + 2) for   2    r = m − 1 λ 2 m ( m + 1) for ≥ s o · 2  2( r +1)( m − r ) m  0 < r < m − 2 for   m − r +1 2     2( r +1)( m − r ) m m  for 2 < r < m − 1 r On Ψ -Einstein spaces ( M 2 m +1 , θ ) the lower bound is given by λ 2 ≥ 4( r + 1)( m − r ) s o

  19. Ψ-Killing spinors realizes the general lower bound for λ 2 If Φ = Φ µ r + Φ µ r +1 ⇒ Φ µ r or Φ µ r +1 satisfiy some twistor equation in the simultaneous case: ∇ Σ ∇ Σ X 10 Φ µ r = 0 , X 01 Φ µ r +1 = 0 ∇ Σ λ X 01 Φ µ r = − 2( r +1) X 01 Φ µ r +1 ∇ Σ λ X 10 Φ µ r +1 = − 2( m + r ) X 10 Φ µ r for any transversal vector X = X 10 + X 01 ∈ H

  20. Ψ-Killing spinors realizes the general lower bound for λ 2 If Φ = Φ µ r + Φ µ r +1 ⇒ Φ µ r or Φ µ r +1 satisfiy some twistor equation in the simultaneous case: ∇ Σ ∇ Σ X 10 Φ µ r = 0 , X 01 Φ µ r +1 = 0 ∇ Σ λ X 01 Φ µ r = − 2( r +1) X 01 Φ µ r +1 ∇ Σ λ X 10 Φ µ r +1 = − 2( m + r ) X 10 Φ µ r for any transversal vector X = X 10 + X 01 ∈ H ֒ → Φ = strong (transversal) Ψ -Killing spinors Example : Such Φ exist on 3 -Sasakian spaces (with related Ψ-Hermitian form θ )

  21. Parallel spinors We call Φ ∈ Γ(Σ) transversally parallel iff ∇ Σ X Φ = 0 ∀ X ∈ H Due to torsion R ( X , JY )Φ = d θ ( X , JY ) ∇ Σ T Φ and − 1 ∇ Σ 2 m ρ ric T Φ = θ · Φ If we modify the Tanaka-Webster connection by 1 ˆ ∇ T Φ := ∇ Σ 2 m ρ ric T Φ + θ · Φ then Φ is ˆ ∇ -parallel

  22. Parallel spinors We call Φ ∈ Γ(Σ) transversally parallel iff ∇ Σ X Φ = 0 ∀ X ∈ H Due to torsion R ( X , JY )Φ = d θ ( X , JY ) ∇ Σ T Φ and − 1 ∇ Σ 2 m ρ ric T Φ = θ · Φ If we modify the Tanaka-Webster connection by 1 ˆ ∇ T Φ := ∇ Σ 2 m ρ ric T Φ + θ · Φ then Φ is ˆ ∇ -parallel Computing the curvature ˆ R shows: tr C ˆ θ is Ψ-Einstein iff R ( X , Y ) = 0 ∀ X , Y ∈ TM hol ( ˆ i.e. the holonomy algebra is reduced: ∇ ) ⊆ su ( m )

  23. Characterization of Ψ-Einstein spaces Theorem: Let ( M 2 m +1 , θ ) be 1-connected. Then we have the equivalent conditions: M admits transversally parallel spinors ◮ basic holonomy Hol ( θ ) ⊆ SU ( m ) ◮ θ is Ψ-Einstein ◮ (no matter of torsion τ and sign of scal θ )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend