iga lecture ii dirac geometry
play

IGA Lecture II: Dirac Geometry Eckhard Meinrenken Adelaide, - PowerPoint PPT Presentation

IGA Lecture II: Dirac Geometry Eckhard Meinrenken Adelaide, September 6, 2011 Eckhard Meinrenken IGA Lecture II: Dirac Geometry Dirac geometry Dirac geometry was introduced by T. Courant and A. Weinstein as a common geometric framework for


  1. IGA Lecture II: Dirac Geometry Eckhard Meinrenken Adelaide, September 6, 2011 Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  2. Dirac geometry Dirac geometry was introduced by T. Courant and A. Weinstein as a common geometric framework for Poisson structures π ∈ Γ( ∧ 2 TM ) , [ π, π ] = 0, closed 2-forms ω ∈ Γ( ∧ 2 T ∗ M ) , d ω = 0. The name comes from relation with Dirac theory of constraints. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  3. Linear Dirac geometry V vector space, V = V ⊕ V ∗ , � v 1 + α 1 , v 2 + α 2 � = � α 1 , v 2 � + � α 2 , v 1 � . Definition E ⊂ V is Lagrangian if E = E ⊥ . The pair ( V , E ) is called a linear Dirac structure. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  4. Linear Dirac geometry Examples of Lagrangian subspaces: 1 ω ∈ ∧ 2 ( V ∗ ) ⇒ Gr( ω ) = { v + ι v ω | v ∈ V } ∈ Lag( V ). 2 π ∈ ∧ 2 ( V ) ⇒ Gr( π ) = { ι α π + α | α ∈ V ∗ } ∈ Lag( V ). 3 S ⊆ V ⇒ S + ann( S ) ∈ Lag( V ). Most general E ⊂ V given by S ⊂ V , ω ∈ ∧ 2 ( S ∗ ): E = { v + α | v ∈ V , ι v ω = α | S } . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  5. Linear Dirac geometry Let V , V ′ be vector spaces. Definition A morphism R : V ��� V ′ is a Lagrangian subspaces R ⊂ V ′ × V whose projection to V ′ × V is the graph of a map A : V → V ′ . A morphism defines a relation x ∼ R x ′ ; composition of morphisms is composition of relations. Definition A morphism of Dirac structures R : ( V , E ) ��� ( V ′ , E ′ ) is a morphism R : V ��� V ′ such that E ′ = R ◦ E , E ∩ ker( R ) = 0 . Here ker( R ) = { x ∈ V | x ∼ R 0 } . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  6. Linear Dirac geometry Equivalently, a morphism R : V ��� V ′ is given by a linear map A : V → V ′ together with a 2-form ω ∈ ∧ 2 ( V ∗ ), where � v ′ = A ( v ) v + α ∼ R v ′ + α ′ ⇔ α = A ∗ ( α ′ ) + ι v ω Hence, we will also refer to such pairs ( A , ω ) as morphisms. Composition of morphisms reads: ( A ′ , ω ′ ) ◦ ( A , ω ) = ( A ′ ◦ A , ω + A ∗ ω ′ ) . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  7. Linear Dirac Geometry The conditions E ′ = R ◦ E , ker( R ) ∩ E = 0 for Dirac morphisms mean that ∀ x ′ ∈ E ′ ∃ ! x ∈ E : x ∼ R x ′ . This defines a map E ′ → E , x ′ �→ x . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  8. Dirac structures on manifolds Let M be a manifold, T M = TM ⊕ T ∗ M . Definition The Courant bracket on Γ( T M ) is [ [ v 1 + α 1 , v 2 + α 2 ] ] = [ v 1 , v 2 ] + L v 1 α 2 − ι v 2 d α 1 . Definition A Dirac structure on M is a sub-bundle E ⊆ T M such that E = E ⊥ , Γ( E ) is closed under [ [ · , · ] ]. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  9. Dirac structures on manifolds Examples of Dirac structures: 1 For ω ∈ Γ( ∧ 2 T ∗ M ), Gr( ω ) is a Dirac structure ⇔ d ω = 0. 2 For π ∈ Γ( ∧ 2 TM ), Gr( π ) is a Dirac structure ⇔ [ π, π ] = 0. 3 For S ⊂ TM a distribution, S + ann( S ) is a Dirac structure ⇔ S is integrable. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  10. Dirac structures on manifolds More generally, one can twist by a closed 3-form η ∈ Ω 3 ( M ). Put T M η = TM ⊕ T ∗ M . Definition The Courant bracket on Γ( T M η ) is [ [ v 1 + α 1 , v 2 + α 2 ] ] = [ v 1 , v 2 ] + L v 1 α 2 − ι v 2 d α 1 + ι v 1 ι v 2 η. Definition A Dirac structure on M is a sub-bundle E ⊆ T M η such that E = E ⊥ , Γ( E ) is closed under [ [ · , · ] ]. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  11. Dirac structures on manifolds Examples of Dirac structures in T M η : 1 For ω ∈ Γ( ∧ 2 T ∗ M ), Gr( ω ) is a Dirac structure ⇔ d ω = η . 2 For π ∈ Γ( ∧ 2 TM ), Gr( π ) is a Dirac structure ⇔ 1 2 [ π, π ] = − π ♯ ( η ). 3 For S ⊂ TM a distribution, S + ann( S ) is a Dirac structure ⇔ S is integrable and η | ∧ 3 S = 0. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  12. Dirac structures on manifolds Definition A map Φ: M → M ′ together with ω ∈ Ω 2 ( M ) is called a Courant morphism (Φ , ω ): T M η ��� T M ′ η ′ if η = Φ ∗ η ′ + d ω. Definition A Dirac morphism (Φ , ω ): ( T M , E ) ��� ( T M ′ , E ′ ) is a Courant morphism such that (dΦ , ω ) defines linear Dirac morphisms fiberwise. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  13. Application to Hamiltonian geometry G � g ∗ coadjoint action d µ ∈ Ω 1 ( g ∗ , g ∗ ) tautological 1-form For ξ ∈ g put e ( ξ ) = ξ g ∗ + � d µ, ξ � ∈ Γ( T g ∗ ). These satisfy [ [ e ( ξ 1 ) , e ( ξ 2 )] ] = e ([ ξ 1 , ξ 2 ]) , hence span a Dirac structure E g ∗ ⊂ T g ∗ . Remark Equivalently, E g ∗ is the graph of the Kirillov-Poisson bivector on g ∗ . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  14. Application to Hamiltonian geometry A Dirac morphism (Φ , ω ): ( T M , TM ) ��� ( T g ∗ , E g ∗ ) is a Hamiltonian g -space. That is, g acts on M , ω, Φ are invariant, and ω ( ξ g ∗ , · ) + � dΦ , ξ � = 0 , d ω = 0 , ker( ω ) = 0 . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  15. Application to q-Hamiltonian geometry G � G conjugation action, · invariant metric on g = Lie( G ), 12 θ L · [ θ L , θ L ] Cartan 3-form, η = 1 2 ( θ L + θ R ) · ξ ∈ Γ( T G η ). These satisfy For ξ ∈ g put e ( ξ ) = ξ G + 1 [ [ e ( ξ 1 ) , e ( ξ 2 )] ] = e ([ ξ 1 , ξ 2 ]) , hence span a Dirac structure E G ⊂ T G η . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  16. Application to q-Hamiltonian geometry Theorem (Bursztyn-Crainic) A q-Hamiltonian g -space is a Dirac morphism (Φ , ω ): ( T M , TM ) ��� ( T G η , E G ) . This new viewpoint is extremely useful. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  17. Application to q-Hamiltonian geometry Lemma 1 θ L · pr ∗ 2 θ R ∈ Ω 2 ( G × G ) . Then (Mult G , ς ) defines a Let ς = 1 2 pr ∗ Dirac morphism (Mult G , ς ): ( T G η , E G ) × ( T G η , E G ) ��� ( T G η , E G ) . Hence, given two q-Hamiltonian G -spaces ( M i , ω i , Φ i ), one can define their fusion product by composition � (Mult G , ς ) ◦ (Φ 1 , ω 1 ) × (Φ 2 , ω 2 )) . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  18. Application to q-Hamiltonian geometry Use · to identify g ∼ = g ∗ . Lemma Let ̟ ∈ Ω 2 ( g ) be the standard primitive of exp ∗ η . Then (exp , ̟ ) defines a Dirac morphism (exp , ̟ ): ( T g , E g ) ��� ( T G η , E G ) over the subset of g where exp is regular. Hence, if ( M , ω 0 , Φ 0 ) is a Hamiltonian G -space, such that exp regular over Φ 0 ( M ), then (Φ , ω ) := (exp , ̟ ) ◦ (Φ 0 , ω 0 ) defines a q-Hamiltonian G -space. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  19. Application to q-Hamiltonian geometry We will use the Dirac geometry viewpoint to explain the following fact. Suppose G is compact and simply connected. Fact: q-Hamiltonian G -spaces ( M , ω, Φ) carry distinguished invariant volume forms. These are the analogues of the ‘Liouville forms’ of symplectic manifolds. We will need the concept of ‘pure spinors’. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  20. Pure spinors Return to the linear algebra set-up: V = V ⊕ V ∗ , �· , ·� . Definition The Clifford algebra C l( V ) is the unital algebra with generators x ∈ V and relations x 1 x 2 + x 2 x 1 = � x 1 , x 2 � . The spinor module over C l( V ) is given by ̺ : C l( V ) → End( ∧ V ∗ ) , ̺ ( v + α ) φ = ι v φ + α ∧ φ. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  21. Pure spinors For φ ∈ ∧ V ∗ let N ( φ ) = { x ∈ V | ̺ ( x ) φ = 0 } . Lemma For φ � = 0 , the space N ( φ ) ⊆ V is isotropic. (Exercise!) Definition (E. Cartan) φ ∈ ∧ V ∗ is a pure spinor if N ( φ ) is Lagrangian. Fact: Every E ∈ Lag( V ) is given by a pure spinor, unique up to scalar. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  22. Pure spinors Example Gr( ω ) = N ( φ ) for φ = e − ω . Gr( π ) = N ( φ ) for φ = e − ι ( π ) Λ, where Λ ∈ ∧ top V ∗ − { 0 } . S + ann( S ) = N ( φ ) for φ ∈ ∧ top (ann( S )) − { 0 } . Lemma Suppose φ ∈ ∧ ( V ∗ ) is a pure spinor. Then φ [ top ] � = 0 ⇔ N ( φ ) ∩ V = 0 . (Exercise!) Example Let φ = e − ω . Then N ( φ ) ∩ V = Gr( ω ) ∩ V = ker( ω ) is trivial if and only if ( e − ω ) [ top ] � = 0. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  23. Pure spinors Lemma Suppose ( A , ω ): ( V , E ) ��� ( V ′ , E ′ ) is a Dirac morphism. If φ ′ ∈ ∧ ( V ′ ) ∗ is a pure spinor with E ′ ∩ N ( φ ′ ) = 0 , then φ = e − ω A ∗ φ ′ is a pure spinor with E ∩ N ( φ ) = 0 . Exercise! In particular if E = V then ( e − ω A ∗ φ ′ ) [ top ] is a volume form. Eckhard Meinrenken IGA Lecture II: Dirac Geometry

  24. The q-Hamiltonian volume form Back to q-Hamiltonian G -spaces, viewed as Morita morphisms (Φ , ω ): ( T M , TM ) ��� ( T G η , E G ) If we can find ψ ∈ Γ( G , ∧ T ∗ G ) with E ∩ N ( ψ ) = 0, then ( e − ω Φ ∗ ψ ) [top] is a volume form on M . Eckhard Meinrenken IGA Lecture II: Dirac Geometry

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend