iga lecture iii twisted spin c structures
play

IGA Lecture III: Twisted Spin c structures Eckhard Meinrenken - PowerPoint PPT Presentation

IGA Lecture III: Twisted Spin c structures Eckhard Meinrenken Adelaide, September 7, 2011 Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures Review: Spin c -structures ( V , B ) a finite-dimensional Euclidean vector space, C l( V )


  1. IGA Lecture III: Twisted Spin c structures Eckhard Meinrenken Adelaide, September 7, 2011 Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  2. Review: Spin c -structures ( V , B ) a finite-dimensional Euclidean vector space, C l( V ) complex Clifford algebra: generators v ∈ V , relations vv ′ + v ′ v = 2 B ( v , v ′ ) . Then C l( V ) is a finite-dimensional C ∗ -algebra. Similarly, for a finite rank Euclidean vector bundle V → X with fiber metric B define a complex Clifford bundle C l( V ) → X . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  3. Let V → X be a Euclidean vector bundle, rank( V ) even. Definition A Spin c -structure on V is a Z 2 -graded Hermitian vector bundle S → X with a ∗ -isomorphism ̺ : C l( V ) → End(S) . S is called the spinor module. Remarks The definition is equivalent to an orientation on V together with a lift of the structure group from SO( n ) to Spin c ( n ). (Connes, Plymen.) If V has odd rank, one defines a Spin c -structure on V to be a Spin c -structure on V ⊕ R . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  4. Let V → X be a Euclidean vector bundle. Example Suppose J ∈ Γ(O( V )) is a complex structure, J 2 = − id V . Get V C = V + ⊕ V − . Then S = ∧ ( V + ) √ 2( ǫ ( v + ) + ι ( v − )) defines a Spin c -structure on V , with ̺ ( v ) = for v ∈ V . Example Suppose ω ∈ Γ( ∧ 2 V ∗ ) is symplectic; let R ω be the corresponding skew-adjoint endomorphism. Then J ω = R ω | R ω | ∈ Γ(O( V )) is a complex structure, defining a Spin c -structure on V . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  5. Spin c -structures Basic properties Any two Spin c -structure S , S ′ on V differ by a line bundle: S ′ = S ⊗ L ↔ L = Hom C l (S , S ′ ) . Obstructions to existence of Spin c -structure: W 3 ( V ) ∈ H 3 ( X , Z ) , w 1 ( V ) ∈ H 1 ( X , Z 2 ) . Example The dual S ∗ of a spinor module is again a spinor module. Get a line bundle K S = Hom C l (S , S ∗ ) called the canonical line bundle for S. Note K S ⊗ L = K S ⊗ L − 2 . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  6. Spin c -structures If M is a manifold with a smooth Spin c -structure S, one defines the Spin c -Dirac operator ∂ : Γ(S) ∇ ̺ / − → Γ( TM ⊗ S) − → Γ(S) . If L → M is a line bundle, denote by / ∂ L the Spin c -Dirac operator for S ⊗ L . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  7. Quantization of Hamiltonian G -spaces (in a nutshell) Hamiltonian G -space Φ: M → g ∗ 1 ι ( ξ M ) ω = − d � Φ , ξ � , 2 d ω = 0, 3 ker( ω ) = 0. 1. Pick G -invariant Riemannian metric on M ⇒ ω determines a Spin c -structure. 2. Assume ( M , ω, Φ) pre-quantizable; pick a pre-quantum line bundle L → M . 3. Define Q ( M ) := index G ( / ∂ L ) ∈ R ( G ) . For q-Hamiltonian spaces already Step 1 fails, since ω may be degenerate. Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  8. Review: q-Hamiltonian G -spaces Let G be a compact Lie group, and · an invariant inner product on g = Lie( G ). Definition A q-Hamiltonian G -space ( M , ω, Φ) is a G -manifold M , with ω ∈ Ω 2 ( M ) G and Φ ∈ C ∞ ( M , G ) G , satisfying 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  9. For q-Hamiltonian spaces already Step 1 fails: Problems: There is no notion of ‘compatible almost complex structure’ In general, q-Hamiltonian G -spaces need not even admit Spin c -structures. Example = S 4 (does not admit G = Spin(5) has a conjugacy class C ∼ almost complex structure). G = Spin(2 k + 1) , k > 2 has a conjugacy class not admitting a Spin c -structure. Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  10. However, we will show that q-Hamiltonian spaces carry ‘ twisted ’ Spin c -structures. The definition of the twisted Spin c -structures involves Dixmier-Douady bundles Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  11. Dixmier-Douady theory Notation: H separable complex Hilbert space, possibly dim H < ∞ , B ( H ) bounded linear operators, K ( H ) compact operators (= B fin ( H )) Fact: Aut( K ( H )) = PU( H ) (strong topology). Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  12. Dixmier-Douady theory Definition A DD-bundle A → X is a Z 2 -graded bundle of ∗ -algebras modeled on K ( H ), (for H a Z 2 -graded Hilbert space), with structure group the even part of PU( H ). Theorem (Dixmier-Douady) The obstruction to writing A = K ( E ) , with E a Z 2 -graded bundle of Hilbert spaces, is a class DD( A ) ∈ H 3 ( X , Z ) × H 1 ( X , Z 2 ) . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  13. Dixmier-Douady theory Hence, the trivially graded DD bundles give a ‘realization’ of H 3 ( X , Z ), similar to line bundles ‘realizing’ H 2 ( X , Z ). Remark This framework is not convenient for a Chern-Weil theory. A more differential-geometric realization is given by the theory of bundle gerbes. Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  14. Dixmier-Douady theory Definition Let A 1 → X 1 , A 2 → X 2 be DD -bundles. A Morita morphism (Φ , E ): A 1 ��� A 2 is a map Φ: X 1 → X 2 together with a Z 2 -graded bundle E → X 1 of bimodules Φ ∗ A 2 � E � A 1 , locally modeled on K ( H 2 ) � K ( H 1 , H 2 ) � K ( H 1 ). Remark (Φ , E ): A 1 ��� A 2 exists if and only if DD( A 1 ) = Φ ∗ DD( A 2 ) . Any two Morita bimodules E , E ′ differ by a line bundle: E ′ = E ⊗ L ↔ L = Hom Φ ∗ A 2 −A 1 ( E , E ′ ) . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  15. Dixmier-Douady theory Example V → X Euclidean vector bundle of even rank ⇒ C l( V ) is a DD-bundle. A Morita trivialization ( p , S op ): C l( V ) ��� C is a Spin c -structure. The DD-class is given by DD(S) = ( W 3 ( V ) , w 1 ( V )) ∈ H 3 ( X , Z ) × H 1 ( X , Z 2 ) . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  16. From Dirac structures to DD bundles Review of linear Dirac structures A Dirac structure on vector space V is a Lagrangian subspace E ⊂ V = V ⊕ V ∗ . For Θ: V 1 → V 2 and ω ∈ ∧ 2 V ∗ 1 write � v 2 = Θ( v 1 ) v 1 + µ 1 ∼ (Θ ,ω ) v 2 + µ 2 ⇔ µ 1 = Θ ∗ ( µ 2 ) + ω ( v 1 , · ) It defines a Dirac morphism (Θ , ω ): ( V 1 , E 1 ) ��� ( V 2 , E 2 ) if every element of E 2 is related to a unique element of E 1 . The definitions extend to vector bundles V → X . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  17. From Dirac structures to DD bundles Example Hamiltonian G -spaces are described as G -equivariant Dirac morphisms (Φ , ω ): ( T M , TM ) ��� ( T g ∗ , E g ∗ ) . q-Hamiltonian G -spaces are described as G -equivariant Dirac morphisms (Φ , ω ): ( T M , TM ) ��� ( T G η , E G ) . There is a multiplication morphism (Mult G , ς ): ( T G η , E G ) × ( T G η , E G ) ��� ( T G η , E G ) . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  18. The Dirac-Dixmier-Douady functor Theorem (Alekseev-M, 2010) There is a functor from Dirac structures on vector bundles V → X to DD-bundles: E �→ A E . Furthermore, there are canonical Morita isomorphisms C l( V ) ��� A V , C ��� A V ∗ N.B.: We identify two Morita morphisms E , E ′ : A 1 ��� A 2 if they are related by a trivial line bundle. Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  19. Example The Cartan Dirac structure ( T G η , E G ) defines a DD-bundle A Spin := A E G → G . The ‘multiplication morphism’ for the Cartan Dirac structure gives a morphism Mult ∗ : A Spin × A Spin ��� A Spin . Example A q-Hamiltonian G -space ( M , ω, Φ) defines a Dirac morphism (dΦ , ω ): ( T M , TM ) ��� ( T G η , E G ) . Hence we get a Morita morphism C l( TM ) ��� A TM ��� A E G = A Spin , a ‘twisted Spin c -structure’. Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  20. Construction of the DDD functor E �→ A E Outline 1 From E ⊂ V , construct family of skew-adjoint operators D x , x ∈ X acting on real Hilbert spaces V x . 2 From D = { D x } , construct family of ‘polarizations’ of V x . 3 From the polarization, construct DD -bundle A → X . Inspired by and/or similar to: Carey-Mickelsson-Murray 1997, Lott 2002, Atiyah-Segal 2004, Freed-Hopkins-Teleman 2005, Bouwknegt-Mathai-Wu 2011. Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  21. Step 1: Constructing { D x , x ∈ X } Assume X = pt, so V is a vector space. Choice of Euclidean metric B identifies Lag( V ) ∼ = O( V ) . Here A ∈ O( V ) corresponds to E = { (( A − I ) v , 1 2 ( A + I ) v ) ∈ V = V ⊕ V ∗ | v ∈ V } . Define skew-adjoint operator D E = ∂ ∂ t on V = L 2 ([0 , 1] , V ), with domain dom( D E ) = { f : f (1) = − Af (0) } . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

  22. Step 1: Constructing { D x , x ∈ X } Example E = V ∗ corresponds to A = I , and f (1) = − Af (0) are anti-periodic boundary conditions. Note ker( D E ) = 0. Example E = V corresponds to A = − I , and f (1) = − Af (0) are periodic boundary conditions. Note ker( D E ) = V . Note that in general, ker( D E ) = ker( A + I ) = E ∩ V . Eckhard Meinrenken IGA Lecture III: Twisted Spin c structures

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend