twisted k theory and finite dimensional approximation
play

Twisted K-theory and finite-dimensional approximation Kiyonori - PDF document

Twisted K-theory and finite-dimensional approximation Kiyonori Gomi Problem in twisted K -theory Realize twisted K -theory generally by means of finite dimensional geometric ob- jects. Main theorem We can


  1. Twisted K-theory and finite-dimensional approximation Kiyonori Gomi

  2. ✓ ✏ Problem in twisted K -theory Realize twisted K -theory generally by means of finite dimensional geometric ob- jects. ✒ ✑ ✓ ✏ Main theorem We can define a group by means of “ twisted Z 2 -graded Hermitian general vec- tor bundles ”, into which there exists a monomorphism from twisted K -theory. ✒ ✑ Plan § 1 Twisted K -theory § 2 Hermitian general vector bundle 1

  3. § 1 Twisted K -theory Origin P. Donovan and M. Karoubi (1970) J. Rosenberg (1989) Application D -brane charges [Witten, Kapustin, ...] The Verlinde algebras [Freed-Hopkins-Teleman] The quantum Hall effect [Carey-Hannabuss-Mathai-McCann] 2

  4. K -theory X : compact Vect( X ) = the isomorphism classes of finite dimensional vector bundles over X ✓ ✏ Definition K ( X ) = K (Vect( X )) = Vect( X ) × Vect( X ) / ∆(Vect( X )) ✒ ✑ Vector bundles � � ������������������������������������ � � � � � � � � � � � � � � � � � K ( X ) � � � � � � � � � � � � � Fredholm C ∗ -algebra operators 3

  5. Fredholm operators H : separable Hilbert space (dim H = ∞ ) A Fredholm operator f : H → H  bounded linear ,  def  Image( f ) ⊂ H : closed , ⇐ ⇒ dimKer( f ) , dimCoker( f ) < ∞ .   F ( H ) = { Fredholm operators f : H → H} ✓ ✏ Fact [Atiyah, J¨ anich] X : compact C ( X, F ( H )) / htpy iso − → K ( X ) ✒ ✑ 4

  6. Twisted K -theory Ad PU ( H ) = U ( H ) /U (1) � F ( H ) ✓ ✏ Definition P → X : principal PU ( H )-bundle K ( X ; P ) = Γ( X, P × Ad F ( H )) / htpy ✒ ✑ • P ∼ = X × PU ( H ) ⇒ K ( X ; P ) ∼ = K ( X ).  U ( H ) ≃ pt ,   • PU ( H ) ≃ K ( Z , 2) ,  BPU ( H ) ≃ K ( Z , 3) .  Principal PU ( H )-bundles P are classified by their Dixmier-Douady classes: δ ( P ) ∈ H 3 ( X ; Z ) . 5

  7. Examples ∼ � H 3 ( X ; Z ) = Z , δ ( P ) = k � = 0 . X = S 3 K ( S 3 ; k ) ∼ = 0 X = S 1 × S 2 K ( S 1 × S 2 ; k ) ∼ = Z X = S 3 / Z p , ( p : prime) K ( S 3 / Z p ; k ) ∼ = Z p X = SU (3) � k odd Z k K ( SU (3); k ) ∼ = k even Z k/ 2 6

  8. Vector bundles � ������������������������������������ � � � � � � � � � � � � � � � � � � � K ( X ) � � � � � � � � � � � � � Fredholm C ∗ -algebra operators C ( X, F ( H )) / ≃ C ( X ) ? ? ? � � � � � � � � � � � � � � � � � � � � � � � � � � K ( X ; P ) � � � � � � � Fredholm C ∗ -algebra operators Γ( P × Ad K ( H )) Γ( P × Ad F ( H )) / ≃ 7

  9. ✓ ✏ Problem Realize twisted K -theory generally by means of finite dimensional geometric ob- jects. ✒ ✑ δ ( P ) : finite order ⇒ ∃ answer ✓ ✏ Fact � X : compact P : δ ( P ) is finite order We can define a group by means of “ twisted vector bundles ”, to which there exists an isomorphism from K ( X ; P ). ✒ ✑ Remark There are a number of works on twisted vector bundles. 8

  10. Twisted vector bundle • U = { U α } : open cover of X Z 2 ( U , U (1)) : • ( z αβγ ) ∈ ˇ 2-cocycle repre- senting δ ( P ) ∈ H 3 ( X, Z ) ∼ = H 2 ( X, U (1)). ✓ ✏ twisted vector bundle ( E α , φ αβ ) � finite rank vector bundle E α → U α ⇔ φ αβ : E α | U αβ → E β | U αβ isomorphism φ αβ φ βγ = z αβγ φ αγ ✒ ✑ Remark ( E α , φ αβ ) : rank r ⇒ r · δ ( P ) = 0. (det φ αβ )(det φ βγ ) = ( z αβγ ) r (det φ αγ ) 9

  11. § 2 Hermitian general vector bundle M. Furuta, “ Index theorem, II ”. (Japanese) Iwanami Series in Modern Mathematics. Iwanami Shoten, Publishers, Tokyo, 2002. • to approximate Dirac-type operators; linear version of the finite dimensional ap- proximation of the Seiberg-Witten equa- tions • to define K ( X ). ✓ ✏ Theorem[Furuta] X : compact We can define a group by means of Z 2 - graded Hermitian general vector bun- dles, which is isomorphic to K ( X ). ✒ ✑ 10

  12. Hermitian general vector bundle on X ( U , ( E α , h α ) , φ αβ )  U = { U α } open cover of X ;    E α → U α Z 2 -gr. Hermitian vector bundle;   h α : E α → E α Hermitian map of degree 1;   φ αβ : E α | U αβ → E β | U αβ map of degree 0;    1. “ h α φ αβ = φ αβ h β ”,   � x ∈ ∃ V ⊂ U αβ , ∀ x ∈ U αβ ; such that : ∃ µ > 0 ,       ∀ y ∈ V,        ∀ v ∈ { v ∈ ( E α ) y | h 2 �   α v = λv } ,      λ<µ          h α φ αβ ( v ) = φ αβ h β ( v ) . 2. “ φ αβ φ βα = 1”, 3. “ φ αβ φ βγ = φ αγ ”. 11

  13. � ������� ✓ ✏ Fredholm operator f : H → H approximate ( E, h ) E = E 0 ⊕ E 1 Z 2 -gr. Herm. vector space � h : E → E Hermitian map of degree 1 ✒ ✑ ˆ  H = H ⊕ H Z 2 -graded   f ∗ � � Step 1 0 ˆ f = self-adjoint, degree 1  f 0  f 2 ) ∋ 0 : discrete ⇒ ∃ µ > 0 s.t. σ ( ˆ Step 2 f 2 ); • µ �∈ σ ( ˆ f 2 ) ∩ [0 , µ ) consists of a finite number of • σ ( ˆ eigenvalues: 0 = λ 1 < λ 2 < · · · < λ n < µ ; f 2 v = λ i v } : finite dim. • ( H , ˆ f ) λ i = { v ∈ ˆ H| ˆ f 2 ∼ ( H , ˆ f ) 0 = Ker ˆ ( = Ker f ⊕ Coker f ) 12

  14. ˆ f ˆ ˆ H − → H � � 0 H , ˆ H , ˆ ( ˆ ( ˆ f ) 0 → f ) 0 ⊕ ⊕ ∼ H , ˆ H , ˆ ( ˆ ( ˆ f ) λ 2 = f ) λ 2 ⊕ ⊕ ∼ ( ˆ H , ˆ ( ˆ H , ˆ f ) λ 3 f ) λ 3 = ⊕ ⊕ ∼ ( ˆ H , ˆ ( ˆ H , ˆ f ) λ 4 f ) λ 4 = ⊕ ⊕ . . . . . . ⊕ ⊕ ∼ ( ˆ H , ˆ ( ˆ H , ˆ f ) λ n f ) λ n = ⊕ ⊕ ∼ complement complement = � E = ⊕ λ<µ ( ˆ H , ˆ f ) λ , Step 3 Put h = ˆ f | E . 13

  15. � ������� { ˆ f x : ˆ H → ˆ Remark H} x ∈ U : family f 2 • dimKer ˆ x may jump. f 2 • µ �∈ σ ( ˆ x 0 ) ( ˆ H , ˆ � ⇒ dim f x ) λ is constant near x 0 . λ<µ ✓ ✏ family { f x : H → H} x ∈ X approximate ( U , ( E α , h α ) , φ αβ ) Z 2 -gr. Herm. general vector bundle on X ✒ ✑ 14

  16. ✓ ✏ Main theorem � X : compact P : PU ( H )-bundle We can define a group by means of twisted Z 2 -graded Hermitian general vector bun- dles, into which there exists a monomor- phism from K ( X ; P ) = Γ( P × Ad F ( H )) / ≃ . ✒ ✑ • twisting ⇐ “ φ αβ φ βγ = z αβγ φ αγ ” finite dimensional • monomorphism ⇐ approximation 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend