iga lecture iv quantization of group valued moment maps
play

IGA Lecture IV: Quantization of group-valued moment maps Eckhard - PowerPoint PPT Presentation

IGA Lecture IV: Quantization of group-valued moment maps Eckhard Meinrenken Adelaide, September 8, 2011 Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps Representation ring (Notation) The representation ring R ( G )


  1. IGA Lecture IV: Quantization of group-valued moment maps Eckhard Meinrenken Adelaide, September 8, 2011 Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  2. Representation ring (Notation) The representation ring R ( G ) ⊂ C ∞ ( G ) is the subring generated by characters χ V of finite-dimensional G -representations V . It has basis the irreducible characters. G compact, connected, T ⊂ G maximal torus, t = Lie( T ), + ⊂ t ∗ positive Weyl chamber, t ∗ P ⊂ t ∗ (real) weight lattice, P + = P ∩ t ∗ + dominant weights ⇒ R ( G ) = Z [ P + ]. 0 Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  3. Quantization of Hamiltonian G -spaces Recall axioms of Hamiltonian G -spaces, Φ: M → g ∗ : 1 ι ( ξ M ) ω = −� dΦ , ξ � , 2 d ω = 0, 3 ker( ω ) = 0. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  4. Quantization of Hamiltonian G -spaces Recall axioms of Hamiltonian G -spaces, Φ: M → g ∗ : 1 ι ( ξ M ) ω = −� dΦ , ξ � , 2 d ω = 0, 3 ker( ω ) = 0. Definition of quantization Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  5. Quantization of Hamiltonian G -spaces Recall axioms of Hamiltonian G -spaces, Φ: M → g ∗ : 1 ι ( ξ M ) ω = −� dΦ , ξ � , 2 d ω = 0, 3 ker( ω ) = 0. Definition of quantization Symplectic form determines a Spin c -structure. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  6. Quantization of Hamiltonian G -spaces Recall axioms of Hamiltonian G -spaces, Φ: M → g ∗ : 1 ι ( ξ M ) ω = −� dΦ , ξ � , 2 d ω = 0, 3 ker( ω ) = 0. Definition of quantization Symplectic form determines a Spin c -structure. Suppose ( M , ω, Φ) pre-quantizable, pick pre-quantum line bundle L → M . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  7. Quantization of Hamiltonian G -spaces Recall axioms of Hamiltonian G -spaces, Φ: M → g ∗ : 1 ι ( ξ M ) ω = −� dΦ , ξ � , 2 d ω = 0, 3 ker( ω ) = 0. Definition of quantization Symplectic form determines a Spin c -structure. Suppose ( M , ω, Φ) pre-quantizable, pick pre-quantum line bundle L → M . Let / ∂ L Spin c -Dirac operator with coefficients in L . Define Q ( M ) = index G ( / ∂ L ) ∈ R ( G ) . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  8. Quantization of Hamiltonian G -spaces Q ( M ) ∈ R ( G ) is independent of the choices made. Basic Properties: Q ( M 1 ∪ M 2 ) = Q ( M 1 ) + Q ( M 2 ), Q ( M 1 × M 2 ) = Q ( M 1 ) Q ( M 2 ), Q ( M ∗ ) = Q ( M ) ∗ , The coadjoint orbit G .µ, µ ∈ t ∗ + is pre-quantized if and only if µ ∈ P + . In this case, Q ( G .µ ) = χ µ . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  9. Quantization of Hamiltonian G -spaces Let R ( G ) → Z , χ �→ χ G be the map defined by χ G µ = δ µ, 0 . Theorem (Quantization commutes with reduction) Suppose M is a compact pre-quantized Hamiltonian G-space. Then Q ( M ) G = Q ( M / / G ) . This was conjectured (and proved in many cases) by Guillemin-Sternberg. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  10. Quantization of Hamiltonian G -spaces Let R ( G ) → Z , χ �→ χ G be the map defined by χ G µ = δ µ, 0 . Theorem (Quantization commutes with reduction) Suppose M is a compact pre-quantized Hamiltonian G-space. Then Q ( M ) G = Q ( M / / G ) . This was conjectured (and proved in many cases) by Guillemin-Sternberg. One may take care of the singularities of M / / G by partial desingularization (M-Sjamaar). Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  11. Quantization of Hamiltonian G -spaces More generally, let N ( µ ) , µ ∈ P + be the multiplicities given as � Q ( M ) = N ( µ ) χ µ . µ ∈ P + Corollary For all µ ∈ P + , N ( µ ) = Q ( M / / µ G ) where / µ G = Φ − 1 ( O ) / G = ( M × O − ) / M / / G . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  12. Quantization of Hamiltonian G -spaces More generally, let N ( µ ) , µ ∈ P + be the multiplicities given as � Q ( M ) = N ( µ ) χ µ . µ ∈ P + Corollary For all µ ∈ P + , N ( µ ) = Q ( M / / µ G ) where / µ G = Φ − 1 ( O ) / G = ( M × O − ) / M / / G . Consequences Let ∆( M ) ⊂ t ∗ + be the moment polytope. Then N ( µ ) = 0 unless µ ∈ P + ∩ ∆( M ). If M is multiplicity-free (e.g. a symplectic toric space) then N ( µ ) ∈ { 0 , 1 } for all µ ∈ P + . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  13. Quantization of Hamiltonian G -spaces Q ( M ) = index G ( / ∂ ) may also be computed by localization: Theorem (Atiyah-Segal-Singer) � � Td( F ) Ch( L | F , g ) Q ( M )( g ) = D C ( ν F , g ) F F ⊂ M g a sum over fixed point manifolds F ⊂ M g . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  14. Quantization of Hamiltonian G -spaces One can also write the fixed point formula in ‘Spin c -form’. This will be more convenient for our discussion. Theorem (Atiyah-Segal-Singer) � � � A ( F ) Ch( L| F , g ) 1 / 2 Q ( M )( g ) = D R ( ν F , g ) F F ⊂ M g a sum over fixed point manifolds F ⊂ M g . Here L is the ‘Spin c -line bundle’ L = L 2 ⊗ K − 1 , and ν F is the normal bundle to F . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  15. Quantization of Hamiltonian G -spaces Here the various characteristic forms are, in terms of curvature forms: A ( F ) = det − 1 / 2 � 2 π R TF )), j ( z ) = sinh( z / 2) ( j ( 1 R z / 2 � � µ ( t ) exp( 1 Ch( L| F , t ) = tr C 2 π R L ) � � 1 2 rk( ν F ) det 1 / 2 1 − A F ( t ) − 1 exp( 1 D R ( ν F , t ) = i 2 π R F ) . R Here µ ( t ) ∈ U(1) is the action of t on L F , and A F ( t ) ∈ Γ( F , O( ν F )) is the action of t on ν F . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  16. Quantization of q-Hamiltonian G -spaces ? Recall axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  17. Quantization of q-Hamiltonian G -spaces ? Recall axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Questions / Problems Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  18. Quantization of q-Hamiltonian G -spaces ? Recall axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Questions / Problems Where should Q ( M ) take values in ?? Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  19. Quantization of q-Hamiltonian G -spaces ? Recall axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Questions / Problems Where should Q ( M ) take values in ?? ω is not closed, hence ‘pre-quantum line bundle’ does not make sense. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  20. Quantization of q-Hamiltonian G -spaces ? Recall axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Questions / Problems Where should Q ( M ) take values in ?? ω is not closed, hence ‘pre-quantum line bundle’ does not make sense. ω could be degenerate, so ‘compatible almost complex structure’ does not make sense. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  21. Quantization of q-Hamiltonian G -spaces ? Recall axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Questions / Problems Where should Q ( M ) take values in ?? ω is not closed, hence ‘pre-quantum line bundle’ does not make sense. ω could be degenerate, so ‘compatible almost complex structure’ does not make sense. However, we constructed a ‘twisted Spin c -structure’. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  22. Pre-quantization of q-Hamiltonian spaces To simplify the discussion, assume G compact, 1-connected and simple. Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  23. Pre-quantization of q-Hamiltonian spaces To simplify the discussion, assume G compact, 1-connected and simple. Then H 1 ( G , Z ) = H 2 ( G , Z ) = 0 , H 3 ( G , Z ) = Z . Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  24. Pre-quantization of q-Hamiltonian spaces To simplify the discussion, assume G compact, 1-connected and simple. Then H 1 ( G , Z ) = H 2 ( G , Z ) = 0 , H 3 ( G , Z ) = Z . Take · to be the basic inner product on g . Then η = 1 12 θ L · [ θ L , θ L ] ∈ Ω 3 ( G ) represents a generator of H 3 ( G , Z ) ⊂ H 3 ( G , R ). Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

  25. Pre-quantization of q-Hamiltonian spaces The condition d ω = − Φ ∗ η means that ( ω, η ) defines a cocycle for the relative cohomology H 3 (Φ , R ). Eckhard Meinrenken IGA Lecture IV: Quantization of group-valued moment maps

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend