quantization of group valued moment maps iii
play

Quantization of group-valued moment maps III Eckhard Meinrenken - PowerPoint PPT Presentation

Quantization of group-valued moment maps III Eckhard Meinrenken June 4, 2011 Eckhard Meinrenken Quantization of group-valued moment maps III Pre-quantization of q-Hamiltonian spaces Recall again the axioms of q-Hamiltonian G -spaces, : M


  1. Quantization of group-valued moment maps III Eckhard Meinrenken June 4, 2011 Eckhard Meinrenken Quantization of group-valued moment maps III

  2. Pre-quantization of q-Hamiltonian spaces Recall again the axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. 12 θ L · [ θ L , θ L ] ∈ Ω 3 ( G ) is a closed 3-form on G . Here η = 1 Eckhard Meinrenken Quantization of group-valued moment maps III

  3. Pre-quantization of q-Hamiltonian spaces Recall again the axioms of q-Hamiltonian G -spaces, Φ: M → G : 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. 12 θ L · [ θ L , θ L ] ∈ Ω 3 ( G ) is a closed 3-form on G . Here η = 1 Eckhard Meinrenken Quantization of group-valued moment maps III

  4. Cone construction Definition Let F • : S • → R • be a cochain map between cochain complexes. The algebraic mapping cone is the cochain complex cone k ( F ) = R k − 1 ⊕ S k , d( x , y ) = ( F ( y ) − d x , d y ) . Its cohomology is denoted H • ( F ). For a q-Hamiltonian G -space, we have d ω = − Φ ∗ η, d η = 0. Thus: The pair ( ω, − η ) ∈ Ω 3 (Φ) := cone 3 (Φ ∗ ) is a cocycle. Eckhard Meinrenken Quantization of group-valued moment maps III

  5. Pre-quantization Suppose G simple, simply connected, · the basic inner product. Definition Let ( M , ω, Φ) be a q-Hamiltonian G -space, Φ: M → G . A level k pre-quantization of ( M , ω, Φ) is an integral lift of k [( ω, − η )] ∈ H 3 (Φ , R ) . Eckhard Meinrenken Quantization of group-valued moment maps III

  6. Pre-quantization Suppose G simple, simply connected, · the basic inner product. Definition Let ( M , ω, Φ) be a q-Hamiltonian G -space, Φ: M → G . A level k pre-quantization of ( M , ω, Φ) is an integral lift of k [( ω, − η )] ∈ H 3 (Φ , R ) . There is an equivariant version of this condition, but for G simply connected equivariance is automatic. Geometric interpretation involves ‘gerbes’. Eckhard Meinrenken Quantization of group-valued moment maps III

  7. Pre-quantization: Examples Proposition ( M , ω, Φ) is pre-quantizable at level k if and only if for all Σ ∈ Z 2 ( M ) , and any X ∈ C 3 ( G ) with Φ(Σ) = ∂ X, � � k ( ω + η ) ∈ Z . Σ X Eckhard Meinrenken Quantization of group-valued moment maps III

  8. Pre-quantization: Examples Proposition ( M , ω, Φ) is pre-quantizable at level k if and only if for all Σ ∈ Z 2 ( M ) , and any X ∈ C 3 ( G ) with Φ(Σ) = ∂ X, � � k ( ω + η ) ∈ Z . Σ X Example The double D ( G ) = G × G , Φ( a , b ) = aba − 1 b − 1 is pre-quantizable for all k ∈ N , since H 2 ( D ( G )) = 0. Eckhard Meinrenken Quantization of group-valued moment maps III

  9. Pre-quantization: Examples Proposition ( M , ω, Φ) is pre-quantizable at level k if and only if for all Σ ∈ Z 2 ( M ) , and any X ∈ C 3 ( G ) with Φ(Σ) = ∂ X, � � k ( ω + η ) ∈ Z . Σ X Example The double D ( G ) = G × G , Φ( a , b ) = aba − 1 b − 1 is pre-quantizable for all k ∈ N , since H 2 ( D ( G )) = 0. Example The q-Hamiltonian SU( n )-space M = S 2 n is pre-quantized for all k ∈ N , since H 2 ( M ) = 0. Eckhard Meinrenken Quantization of group-valued moment maps III

  10. Pre-quantization of conjugacy classes Recall: G / Ad( G ) ∼ = A (the alcove), taking ξ ∈ A to G . exp ξ . P k = P ∩ kA . Example The level k pre-quantized conjugacy classes are those indexed by ξ ∈ 1 k P k ⊂ A . G = SU(3) k = 3 Eckhard Meinrenken Quantization of group-valued moment maps III

  11. Quantization of q-Hamiltonian G -space Eckhard Meinrenken Quantization of group-valued moment maps III

  12. Quantization of q-Hamiltonian G -space Tricky.. Eckhard Meinrenken Quantization of group-valued moment maps III

  13. Quantization of q-Hamiltonian G -space Tricky.. Let ( M , ω, Φ) be a q-Hamiltonian G -space, pre-quantized at level k . Problems: There is no notion of ‘compatible almost complex structure’ In general, q-Hamiltonian G -spaces need not even admit Spin c -structures. Eckhard Meinrenken Quantization of group-valued moment maps III

  14. Quantization of q-Hamiltonian G -space Tricky.. Let ( M , ω, Φ) be a q-Hamiltonian G -space, pre-quantized at level k . Problems: There is no notion of ‘compatible almost complex structure’ In general, q-Hamiltonian G -spaces need not even admit Spin c -structures. Example = S 4 (does not admit G = Spin(5) has a conjugacy class C ∼ almost complex structure). G = Spin(2 k + 1) , k > 2 has a conjugacy class not admitting a Spin c -structure. Eckhard Meinrenken Quantization of group-valued moment maps III

  15. Quantization of q-Hamiltonian G -space Solution: One defines the quantization ‘abstractly’, using a push-forward in twisted equivariant K -theory. Eckhard Meinrenken Quantization of group-valued moment maps III

  16. Quantization of q-Hamiltonian G -space Solution: One defines the quantization ‘abstractly’, using a push-forward in twisted equivariant K -theory. Theorem (Freed-Hopkins-Teleman) R k ( G ) is the twisted equivariant K-homology of G at level k + h ∨ . Eckhard Meinrenken Quantization of group-valued moment maps III

  17. Quantization of q-Hamiltonian G -space Solution: One defines the quantization ‘abstractly’, using a push-forward in twisted equivariant K -theory. Theorem (Freed-Hopkins-Teleman) R k ( G ) is the twisted equivariant K-homology of G at level k + h ∨ . Theorem (M) Let ( M , ω, Φ) be a level k pre-quantized q-Hamiltonian G-space. Then there is a distinguished R ( G ) -module homomorphism Φ ∗ : K G 0 ( M ) → R k ( G ) . Eckhard Meinrenken Quantization of group-valued moment maps III

  18. Quantization of q-Hamiltonian G -space Solution: One defines the quantization ‘abstractly’, using a push-forward in twisted equivariant K -theory. Theorem (Freed-Hopkins-Teleman) R k ( G ) is the twisted equivariant K-homology of G at level k + h ∨ . Theorem (M) Let ( M , ω, Φ) be a level k pre-quantized q-Hamiltonian G-space. Then there is a distinguished R ( G ) -module homomorphism Φ ∗ : K G 0 ( M ) → R k ( G ) . This push-forward does not involve a Dirac operator. (There’s not enough time here to explain how it is defined – sorry.) Eckhard Meinrenken Quantization of group-valued moment maps III

  19. Quantization of q-Hamiltonian G -spaces Definition The quantization of a level k pre-quantized q-Hamiltonian G -space ( M , ω, Φ) is the element Q ( M ) = Φ ∗ (1) ∈ R k ( G ) . Eckhard Meinrenken Quantization of group-valued moment maps III

  20. Quantization of q-Hamiltonian G -spaces Q ( M ) = Φ ∗ (1) ∈ R k ( G ) . Properties of the quantization: Q ( M 1 ∪ M 2 ) = Q ( M 1 ) + Q ( M 2 ), Q ( M 1 × M 2 ) = Q ( M 1 ) Q ( M 2 ), Q ( M ∗ ) = Q ( M ) ∗ , Let C be the conjugacy class of exp( 1 k µ ), µ ∈ P k . Then Q ( C ) = τ µ . Eckhard Meinrenken Quantization of group-valued moment maps III

  21. Quantization of q-Hamiltonian G -spaces Recall the trace R k ( G ) → Z , τ �→ τ G where τ G µ = δ µ, 0 . Theorem (Quantization commutes with reduction) Let ( M , ω, Φ) be a level k prequantized q-Hamiltonian G-space. Then Q ( M ) G = Q ( M / / G ) . Eckhard Meinrenken Quantization of group-valued moment maps III

  22. Example Let C i be the conjugacy classes of exp( 1 k µ i ) , µ i ∈ P k . Then / G ) = ( τ µ 1 τ µ 2 τ µ 3 ) G = N ( k ) Q ( C 1 × C 2 × C 3 / µ 1 µ 2 µ 3 . Eckhard Meinrenken Quantization of group-valued moment maps III

  23. Example Let C i be the conjugacy classes of exp( 1 k µ i ) , µ i ∈ P k . Then / G ) = ( τ µ 1 τ µ 2 τ µ 3 ) G = N ( k ) Q ( C 1 × C 2 × C 3 / µ 1 µ 2 µ 3 . Hamiltonian analogue: Example Let O i be the coadjoint orbits of µ i ∈ P + . Then / G ) = ( χ µ 1 χ µ 2 χ µ 3 ) G = N µ 1 µ 2 µ 3 . Q ( O 1 × O 2 × O 3 / Eckhard Meinrenken Quantization of group-valued moment maps III

  24. Examples Example The double D ( G ) = G × G , Φ( a , b ) = aba − 1 b − 1 has level k quantization � τ µ τ ∗ Q ( D ( G )) = µ . µ ∈ P k Eckhard Meinrenken Quantization of group-valued moment maps III

  25. Examples Example The double D ( G ) = G × G , Φ( a , b ) = aba − 1 b − 1 has level k quantization � τ µ τ ∗ Q ( D ( G )) = µ . µ ∈ P k The Hamiltonian analogue is the non-compact Hamiltonian G -space T ∗ G . Any reasonable quantization scheme for non-compact spaces gives � Q ( T ∗ G ) = χ µ χ ∗ µ µ ∈ P + (character for conjugation action on L 2 ( G ), defined in a completion of R ( G )). Eckhard Meinrenken Quantization of group-valued moment maps III

  26. Can re-write this in terms of the basis ˜ τ µ , where ˜ τ µ ( t λ ) = δ λ,µ : � � � S ∗ G . exp(1 µ,ν Q k µ ) = τ µ = τ ν . ˜ S 0 ,ν ν ∈ P k � 1 Q ( D ( G )) = ˜ τ ν S 2 0 ,ν ν ∈ P k Eckhard Meinrenken Quantization of group-valued moment maps III

  27. Can re-write this in terms of the basis ˜ τ µ , where ˜ τ µ ( t λ ) = δ λ,µ : � � � S ∗ G . exp(1 µ,ν Q k µ ) = τ µ = τ ν . ˜ S 0 ,ν ν ∈ P k � 1 Q ( D ( G )) = ˜ τ ν S 2 0 ,ν ν ∈ P k Using Q ( M 1 × M 2 ) = Q ( M 1 ) Q ( M 2 ) this gives ... Eckhard Meinrenken Quantization of group-valued moment maps III

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend