shuffle algebra perspective on operator valued
play

Shuffle algebra perspective on operator valued probability theory - PowerPoint PPT Presentation

Shuffle algebra perspective on operator valued probability theory 30 mars 2020 1/25 Operator valued probability theory 2/25 Operator valued probability theory Definition (Operator valued space) An (algebraic) operator valued probability


  1. Shuffle algebra perspective on operator valued probability theory 30 mars 2020 1/25

  2. Operator valued probability theory 2/25

  3. Operator valued probability theory Definition (Operator valued space) An (algebraic) operator valued probability consist of : A complex unital algebra B endowed with an involution ⋆ , 3/25

  4. Operator valued probability theory Definition (Operator valued space) An (algebraic) operator valued probability consist of : A complex unital algebra B endowed with an involution ⋆ , A ⋆ -algeba ( A , ⋆ ) , which is a B - B bimodule over B : b 1 · ( a · b 2 ) = ( b 1 · a ) · b 2 , ( a 1 · b ) a 2 = a 1 ( b · a 2 ) . 3/25

  5. Operator valued probability theory Definition (Operator valued space) An (algebraic) operator valued probability consist of : A complex unital algebra B endowed with an involution ⋆ , A ⋆ -algeba ( A , ⋆ ) , which is a B - B bimodule over B : b 1 · ( a · b 2 ) = ( b 1 · a ) · b 2 , ( a 1 · b ) a 2 = a 1 ( b · a 2 ) . A positive B - B module map E : A → B : E ( b 1 ab 2 ) = b 1 E ( a ) b 2 , E ( aa ⋆ ) ∈ BB ⋆ . 3/25

  6. Operator valued probability theory Definition (Operator valued space) An (algebraic) operator valued probability consist of : A complex unital algebra B endowed with an involution ⋆ , A ⋆ -algeba ( A , ⋆ ) , which is a B - B bimodule over B : b 1 · ( a · b 2 ) = ( b 1 · a ) · b 2 , ( a 1 · b ) a 2 = a 1 ( b · a 2 ) . A positive B - B module map E : A → B : E ( b 1 ab 2 ) = b 1 E ( a ) b 2 , E ( aa ⋆ ) ∈ BB ⋆ . � Speicher, R. Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. 3/25

  7. Operator valued probability theory Definition (Operator valued space) An (algebraic) operator valued probability consist of : A complex unital algebra B endowed with an involution ⋆ , A ⋆ -algeba ( A , ⋆ ) , which is a B - B bimodule over B : b 1 · ( a · b 2 ) = ( b 1 · a ) · b 2 , ( a 1 · b ) a 2 = a 1 ( b · a 2 ) . A positive B - B module map E : A → B : E ( b 1 ab 2 ) = b 1 E ( a ) b 2 , E ( aa ⋆ ) ∈ BB ⋆ . � Speicher, R. Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. � Speicher, R. Operator-valued free probability and block random matrices. 3/25

  8. Operator valued probability theory Definition (Distribution of random variables) Let a 1 , . . . , a n ∈ A . The distribution of a 1 , . . . , a n is the collection of elements in B defined by : E ( b 1 a 1 b 2 · · · a n b n + 1 ) , b 1 , . . . , b n + 1 ∈ B . 4/25

  9. Operator valued probability theory Definition (Distribution of random variables) Let a 1 , . . . , a n ∈ A . The distribution of a 1 , . . . , a n is the collection of elements in B defined by : E ( b 1 a 1 b 2 · · · a n b n + 1 ) , b 1 , . . . , b n + 1 ∈ B . Definition (Free Multiplicative extension on NC .) E π ( b 1 , . . . , b 10 ) = E ( b 1 ab 2 aE ( b 3 aE ( b 4 ab 5 aE ( b 6 ab 7 )) ab 8 ) ab 9 ab 10 ) 4/25

  10. Operator valued probability theory Definition (Boolean multiplicative extension) Let IP be the poset of interval partitions, and write I = I 1 · · · I p for I = { I 1 , . . . , I p } ∈ IP . � E I ( b 1 , . . . , b | I | ) = E ( b ··· + I j − 1 + 1 · · · b ··· + I j ) i ∈ 1 ,..., p 5/25

  11. Operator valued probability theory Definition (Boolean multiplicative extension) Let IP be the poset of interval partitions, and write I = I 1 · · · I p for I = { I 1 , . . . , I p } ∈ IP . � E I ( b 1 , . . . , b | I | ) = E ( b ··· + I j − 1 + 1 · · · b ··· + I j ) i ∈ 1 ,..., p Definition (Boolean and Free cumulants) � � E ( b 1 , . . . , b n + 1 ) = κ π ( b 1 , . . . , b n + 1 ) = β π ( b 1 , . . . , b n + 1 ) . π ∈ NC ( n ) β ∈ IP ( n ) 5/25

  12. Operator valued probability theory Definition (Boolean multiplicative extension) Let IP be the poset of interval partitions, and write I = I 1 · · · I p for I = { I 1 , . . . , I p } ∈ IP . � E I ( b 1 , . . . , b | I | ) = E ( b ··· + I j − 1 + 1 · · · b ··· + I j ) i ∈ 1 ,..., p Definition (Boolean and Free cumulants) � � E ( b 1 , . . . , b n + 1 ) = κ π ( b 1 , . . . , b n + 1 ) = β π ( b 1 , . . . , b n + 1 ) . π ∈ NC ( n ) β ∈ IP ( n ) Free and Boolean cumulants linearize Free and Boolean operator valued independance. 5/25

  13. Shuffle approach to scalar probability theory 6/25

  14. ✁ ✁ Double bar construction H = ¯ T ( T ( A )) . n 1 | a 2 a 1 1 · · · a 1 1 · · · a 2 ∅ , a 1 · · · a n , m 1 ∆ ✁ ( · ) = ∅ ⊗ · + · ⊗ ∅ + ¯ ∆( · ) = ∅ ⊗ · + · ⊗ ∅ + ∆ ≺ ( · ) + ∆ ≻ ( · ) . 7/25

  15. Double bar construction H = ¯ T ( T ( A )) . n 1 | a 2 a 1 1 · · · a 1 1 · · · a 2 ∅ , a 1 · · · a n , m 1 ∆ ✁ ( · ) = ∅ ⊗ · + · ⊗ ∅ + ¯ ∆( · ) = ∅ ⊗ · + · ⊗ ∅ + ∆ ≺ ( · ) + ∆ ≻ ( · ) . Proposition Hom Vect C ( H , ✁ ) is a monoid and G = Hom Alg ( H , ✁ ) is a group. 7/25

  16. Double bar construction H = ¯ T ( T ( A )) . n 1 | a 2 a 1 1 · · · a 1 1 · · · a 2 ∅ , a 1 · · · a n , m 1 ∆ ✁ ( · ) = ∅ ⊗ · + · ⊗ ∅ + ¯ ∆( · ) = ∅ ⊗ · + · ⊗ ∅ + ∆ ≺ ( · ) + ∆ ≻ ( · ) . Proposition Hom Vect C ( H , ✁ ) is a monoid and G = Hom Alg ( H , ✁ ) is a group. � � k ≺ n , k ≻ n exp ≺ ( k ) = 1 ⋆ + exp ≻ ( k ) = 1 ⋆ + n ≥ 1 n ≥ 1 7/25

  17. Double bar construction H = ¯ T ( T ( A )) . n 1 | a 2 a 1 1 · · · a 1 1 · · · a 2 ∅ , a 1 · · · a n , m 1 ∆ ✁ ( · ) = ∅ ⊗ · + · ⊗ ∅ + ¯ ∆( · ) = ∅ ⊗ · + · ⊗ ∅ + ∆ ≺ ( · ) + ∆ ≻ ( · ) . Proposition Hom Vect C ( H , ✁ ) is a monoid and G = Hom Alg ( H , ✁ ) is a group. � � k ≺ n , k ≻ n exp ≺ ( k ) = 1 ⋆ + exp ≻ ( k ) = 1 ⋆ + n ≥ 1 n ≥ 1 exp ≺ ( k ) − 1 = exp ≻ ( − k ) . 7/25

  18. Shuffle and non-commutative probability theory A ⋆ -algebra A and an expectation E : A → C . M ∈ G , M ( a 1 ⊗ · · · ⊗ a n ) = E ( a 1 · A · · · · A a n ) k ∈ Lie ( G ) , k ( a 1 ⊗ · · · ⊗ a n ) = κ ( a 1 , . . . , a n ) b ∈ Lie ( G ) , b ( a 1 , . . . , a n ) = β ( a 1 ⊗ · · · ⊗ a n ) 8/25

  19. Shuffle and non-commutative probability theory A ⋆ -algebra A and an expectation E : A → C . M ∈ G , M ( a 1 ⊗ · · · ⊗ a n ) = E ( a 1 · A · · · · A a n ) k ∈ Lie ( G ) , k ( a 1 ⊗ · · · ⊗ a n ) = κ ( a 1 , . . . , a n ) b ∈ Lie ( G ) , b ( a 1 , . . . , a n ) = β ( a 1 ⊗ · · · ⊗ a n ) M = ε + k ≺ M , M = ε + M ≻ b M = exp ≺ ( k ) = exp ≻ ( b ) 8/25

  20. Shuffle and non-commutative probability theory A ⋆ -algebra A and an expectation E : A → C . M ∈ G , M ( a 1 ⊗ · · · ⊗ a n ) = E ( a 1 · A · · · · A a n ) k ∈ Lie ( G ) , k ( a 1 ⊗ · · · ⊗ a n ) = κ ( a 1 , . . . , a n ) b ∈ Lie ( G ) , b ( a 1 , . . . , a n ) = β ( a 1 ⊗ · · · ⊗ a n ) M = ε + k ≺ M , M = ε + M ≻ b M = exp ≺ ( k ) = exp ≻ ( b ) � Ebrahimi-Fard, K., Patras, F. Cumulants, free cumulants and half-shuffles. � Ebrahimi-Fard, K., Patras, F. Monotone, free, and boolean cumulants : a shuffle algebra approach. 8/25

  21. Relation between Möbius inversion and Shuffles � Ebrahimi-Fard, K., Foissy, L., Kock, J., Patras, F. Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations. ⇒ Gap insertion operad of non-crossing Shuffle Approach = partitions Operad NC − → incidence bi-algebra ( N , ∆) on words on non-crossing partitions : � q ⊗ ( p 1 ⊗ . . . ⊗ p n ) = ∆ + ≺ ( π ) + ∆ + ∆( π ) = ≻ ( π ) . π = q ◦ ( p 1 ,..., p n ) f = ( E ( a n )) n ≥ 1 F : NC → C , multiplicative F : N → C , F = ε N + f ≺ F . 9/25

  22. Relation between Möbius inversion and Shuffles � Ebrahimi-Fard, K., Foissy, L., Kock, J., Patras, F. Operads of (noncrossing) partitions, interacting bialgebras, and moment-cumulant relations. ⇒ Block substitution operad Möbius inversion = 9/25

  23. Shuffle operadic approach to operator valued cumulants and moments 10/25

  24. ⊠ Express multiplicativity of { E π , π ∈ NC } . Define a decomposition map ∆ that presevers linear order of the "legs" of a non-crossing partition. ⊗ ⊗ ⊗ Give a Lie theoretic perspective, with a group of morphisms and a Lie algebra of infinitesimal morphisms and a fixed point equation for { E π , π ∈ NC } . 11/25

  25. ⊗ 12/25

  26. 12/25

  27. Duoidal Category of bigraded collections n , m ≥ 0 , C n , m ∈ Vect C , C C C = ( C n , m ) n , m 13/25

  28. Duoidal Category of bigraded collections n , m ≥ 0 , C n , m ∈ Vect C , C C C = ( C n , m ) n , m ⊗ Horizontal product ⊗ ⊗ and Vertical product ⊠ 13/25

  29. Duoidal Category of bigraded collections n , m ≥ 0 , C n , m ∈ Vect C , C C C = ( C n , m ) n , m ⊗ Horizontal product ⊗ ⊗ and Vertical product ⊠ � � ⊗ ( C ⊗ ⊗ D ) n , m = C n c , m c ⊗ D n d , m d , ( C ⊠ D ) n , m = C n , k ⊗ D k , m n c + n d = n k m c + m d = m 13/25

  30. Duoidal Category of bigraded collections n , m ≥ 0 , C n , m ∈ Vect C , C C C = ( C n , m ) n , m ⊗ Horizontal product ⊗ ⊗ and Vertical product ⊠ � � ⊗ ( C ⊗ ⊗ D ) n , m = C n c , m c ⊗ D n d , m d , ( C ⊠ D ) n , m = C n , k ⊗ D k , m n c + n d = n k m c + m d = m ⊗ ⊗ ⊗ ⊠ 13/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend