quantum supergroups and canonical bases
play

Quantum supergroups and canonical bases Sean Clark University of - PowerPoint PPT Presentation

Quantum supergroups and canonical bases Sean Clark University of Virginia Dissertation Defense April 4, 2014 W HAT IS A QUANTUM GROUP ? A quantum group is a deformed universal enveloping algebra. W HAT IS A QUANTUM GROUP ? A quantum group is a


  1. Quantum supergroups and canonical bases Sean Clark University of Virginia Dissertation Defense April 4, 2014

  2. W HAT IS A QUANTUM GROUP ? A quantum group is a deformed universal enveloping algebra.

  3. W HAT IS A QUANTUM GROUP ? A quantum group is a deformed universal enveloping algebra. Let g be a semisimple Lie algebra (e.g. sl ( n ) , so ( 2 n + 1 ) ). � Π = { α i : i ∈ I } the simple roots.

  4. W HAT IS A QUANTUM GROUP ? A quantum group is a deformed universal enveloping algebra. Let g be a semisimple Lie algebra (e.g. sl ( n ) , so ( 2 n + 1 ) ). � Π = { α i : i ∈ I } the simple roots. U q ( g ) is the Q ( q ) algebra with generators E i , F i , K ± 1 for i ∈ I , i Various relations; for example, = q � h i ,α j � E j ◮ K i ≈ q h i , e.g. K i E j K − 1 i ◮ quantum Serre, e.g. F 2 i F j − [ 2 ] F i F j F i + F j F 2 i = 0 (here [ 2 ] = q + q − 1 is a quantum integer)

  5. W HAT IS A QUANTUM GROUP ? A quantum group is a deformed universal enveloping algebra. Let g be a semisimple Lie algebra (e.g. sl ( n ) , so ( 2 n + 1 ) ). � Π = { α i : i ∈ I } the simple roots. U q ( g ) is the Q ( q ) algebra with generators E i , F i , K ± 1 for i ∈ I , i Various relations; for example, = q � h i ,α j � E j ◮ K i ≈ q h i , e.g. K i E j K − 1 i ◮ quantum Serre, e.g. F 2 i F j − [ 2 ] F i F j F i + F j F 2 i = 0 (here [ 2 ] = q + q − 1 is a quantum integer) Some important features are: ◮ an involution q = q − 1 , K i = K − 1 , E i = E i , F i = F i ; i ◮ a bar invariant integral Z [ q , q − 1 ] -form of U q ( g ) .

  6. C ANONICAL BASIS AND CATEGORIFICATION U q ( n − ) , the subalgebra generated by F i .

  7. C ANONICAL BASIS AND CATEGORIFICATION U q ( n − ) , the subalgebra generated by F i . [Lusztig, Kashiwara]: U q ( n − ) has a canonical basis , which ◮ is bar-invariant, ◮ descends to a basis for each h. wt. integrable module, ◮ has structure constants in N [ q , q − 1 ] (symmetric type).

  8. C ANONICAL BASIS AND CATEGORIFICATION U q ( n − ) , the subalgebra generated by F i . [Lusztig, Kashiwara]: U q ( n − ) has a canonical basis , which ◮ is bar-invariant, ◮ descends to a basis for each h. wt. integrable module, ◮ has structure constants in N [ q , q − 1 ] (symmetric type). Relation to categorification : ◮ U q ( n − ) categorified by quiver Hecke algebras [Khovanov-Lauda, Rouquier] ◮ canonical basis ↔ indecomp. projectives (symmetric type) [Varagnolo-Vasserot].

  9. L IE SUPERALGEBRAS g : a Lie superalgebra (everything is Z / 2 Z -graded). e.g. gl ( m | n ) , osp ( m | 2 n )

  10. L IE SUPERALGEBRAS g : a Lie superalgebra (everything is Z / 2 Z -graded). e.g. gl ( m | n ) , osp ( m | 2 n ) Example: osp ( 1 | 2 ) is the set of 3 × 3 matrices of the form     0 0 0 0 a b A = 0 c d + − b 0 0     e − c a 0 0 0 � �� � � �� � A 0 A 1 with the super bracket; i.e. the usual bracket, except [ A 1 , B 1 ] = A 1 B 1 + B 1 A 1 . (Note: The subalgebra of the A 0 is ∼ = to sl ( 2 ) .)

  11. O UR QUESTION Quantized Lie superalgebras have been well studied (Benkart, Jeong, Kang, Kashiwara, Kwon, Melville, Yamane, ...)

  12. O UR QUESTION Quantized Lie superalgebras have been well studied (Benkart, Jeong, Kang, Kashiwara, Kwon, Melville, Yamane, ...) U q ( n − ) : algebra generated by F i satisfying super Serre relations. Is there a canonical basis ` a la Lusztig, Kashiwara?

  13. O UR QUESTION Quantized Lie superalgebras have been well studied (Benkart, Jeong, Kang, Kashiwara, Kwon, Melville, Yamane, ...) U q ( n − ) : algebra generated by F i satisfying super Serre relations. Is there a canonical basis ` a la Lusztig, Kashiwara? Some potential obstructions are: ◮ Existence of isotropic simple roots: ( α i , α i ) = 0 ◮ No integral form, bar involution (e.g. quantum osp ( 1 | 2 ) ) ◮ Lack of positivity due to super signs Experts did not expect canonical bases to exist!

  14. I NFLUENCE OF CATEGORIFICATION ◮ [KL,R] (’08): quiver Hecke categorify quantum groups

  15. I NFLUENCE OF CATEGORIFICATION ◮ [KL,R] (’08): quiver Hecke categorify quantum groups ◮ [KKT11]: introduce quiver Hecke superalgebras (QHSA) (Generalizes a construction of Wang (’06))

  16. I NFLUENCE OF CATEGORIFICATION ◮ [KL,R] (’08): quiver Hecke categorify quantum groups ◮ [KKT11]: introduce quiver Hecke superalgebras (QHSA) (Generalizes a construction of Wang (’06)) ◮ [KKO12]: QHSA’s categorify quantum groups (Generalizes a rank 1 construction of [EKL11])

  17. I NFLUENCE OF CATEGORIFICATION ◮ [KL,R] (’08): quiver Hecke categorify quantum groups ◮ [KKT11]: introduce quiver Hecke superalgebras (QHSA) (Generalizes a construction of Wang (’06)) ◮ [KKO12]: QHSA’s categorify quantum groups (Generalizes a rank 1 construction of [EKL11]) ◮ [HW12]: QHSA’s categorify quantum super groups (assuming no isotropic roots)

  18. I NSIGHT FROM [HW] Key Insight [HW]: use a parameter π 2 = 1 for super signs e.g. a super commutator AB + BA becomes AB − π BA

  19. I NSIGHT FROM [HW] Key Insight [HW]: use a parameter π 2 = 1 for super signs e.g. a super commutator AB + BA becomes AB − π BA ◮ π = 1 � non-super case. ◮ π = − 1 � super case.

  20. I NSIGHT FROM [HW] Key Insight [HW]: use a parameter π 2 = 1 for super signs e.g. a super commutator AB + BA becomes AB − π BA ◮ π = 1 � non-super case. ◮ π = − 1 � super case. There is a bar involution on Q ( q )[ π ] given by q �→ π q − 1 .

  21. I NSIGHT FROM [HW] Key Insight [HW]: use a parameter π 2 = 1 for super signs e.g. a super commutator AB + BA becomes AB − π BA ◮ π = 1 � non-super case. ◮ π = − 1 � super case. There is a bar involution on Q ( q )[ π ] given by q �→ π q − 1 . [ n ] = ( π q ) n − q − n π q − q − 1 , e.g. [ 2 ] = π q + q − 1 . Note π q + q − 1 has positive coefficients. (vs. − q + q − 1 ) i = ( π q + q − 1 ) F ( 2 ) (Important for categorification: e.g. F 2 .) i

  22. A NISOTROPIC KM � I 1 (simple roots), parity p ( i ) with i ∈ I p ( i ) . I = I 0 Symmetrizable generalized Cartan matrix ( a ij ) i , j ∈ I : ◮ a ij ∈ Z , a ii = 2, a ij ≤ 0; ◮ positive symmetrizing coefficients d i ( d i a ij = d j a ji ); ◮ (anisotropy) a ij ∈ 2 Z for i ∈ I 1 ; ◮ (bar-compatibility) d i = p ( i ) mod 2, where i ∈ I p ( i )

  23. E XAMPLES (F INITE AND A FFINE ) ( • =odd root) • < ◦ ◦ · · · ◦ ◦ ◦ ( osp ( 1 | 2 n )) • < ◦ ◦ · · · ◦ ◦ < ◦ • < ◦ ◦ · · · ◦ ◦ > • ◦ ✈ ✈ ✈ • ◦ ◦ · · · ◦ ◦ ◦ < ✈ ❍ ❍ ❍ ❍ ◦ ◦ > • < ◦ • < ◦ • < > •

  24. F INITE TYPE The only finite type covering algebras have Dynkin diagrams • < ◦ ◦ · · · ◦ ◦ ◦

  25. F INITE TYPE The only finite type covering algebras have Dynkin diagrams • < ◦ ◦ · · · ◦ ◦ ◦ This diagram corresponds to ◮ the Lie superalgebra osp ( 1 | 2 n )

  26. F INITE TYPE The only finite type covering algebras have Dynkin diagrams • < ◦ ◦ · · · ◦ ◦ ◦ This diagram corresponds to ◮ the Lie superalgebra osp ( 1 | 2 n ) ◮ the Lie algebra so ( 1 + 2 n )

  27. F INITE TYPE The only finite type covering algebras have Dynkin diagrams • < ◦ ◦ · · · ◦ ◦ ◦ This diagram corresponds to ◮ the Lie superalgebra osp ( 1 | 2 n ) ◮ the Lie algebra so ( 1 + 2 n ) These algebras have similar representation theories. ◮ osp ( 1 | 2 n ) irreps ↔ half of so ( 2 n + 1 ) irreps.

  28. F INITE TYPE The only finite type covering algebras have Dynkin diagrams • < ◦ ◦ · · · ◦ ◦ ◦ This diagram corresponds to ◮ the Lie superalgebra osp ( 1 | 2 n ) ◮ the Lie algebra so ( 1 + 2 n ) These algebras have similar representation theories. ◮ osp ( 1 | 2 n ) irreps ↔ half of so ( 2 n + 1 ) irreps. ◮ U q ( osp ( 1 | 2 n )) / C ( q ) ↔ all of U q ( so ( 2 n + 1 )) irreps. [Zou98]

  29. R ANK 1 [CW]: U q ( osp ( 1 | 2 )) / Q ( q ) can be tweaked to get all reps. EF − π FE = 1 K − K − 1 π K − K − 1 or π q − q − 1 π q − q − 1 � �� � � �� � even h.w. odd h.w.

  30. R ANK 1 [CW]: U q ( osp ( 1 | 2 )) / Q ( q ) can be tweaked to get all reps. EF − π FE = π h K − K − 1 ( h the Cartan generator ) ( ∗ ) π q − q − 1

  31. R ANK 1 [CW]: U q ( osp ( 1 | 2 )) / Q ( q ) can be tweaked to get all reps. EF − π FE = π h K − K − 1 ( h the Cartan generator ) ( ∗ ) π q − q − 1 New definition: generators E , F , K ± 1 , J , relations J 2 = 1 , JK = KJ , JEJ − 1 = E , KEK − 1 = q 2 E , JFJ − 1 = F , KFK − 1 = q − 2 F , EF − π F j E i = JK − K − 1 ( ∗ ′ ) π q − q − 1 ; (If h is the Cartan element, K = q h and J = π h .)

  32. D EFINITION OF QUANTUM COVERING GROUPS Let A be a symmetrizable GCM. U is the Q ( q )[ π ] -algebra with generators E i , F i , K ± 1 , J i and relations i 2 = 1 , J i J i K i = K i J i , J i J j = J j J i J i E j J − 1 = π a ij E j , J i F j J − 1 = π − a ij F j . i i J d i i K d i i − K − d i E i F j − π p ( i ) p ( j ) F j E i = δ ij i ( π q ) d i − q − d i ; and others (super quantum Serre, usual K relations).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend