u q gl m 1 and canonical bases
play

U q ( gl ( m | 1 )) and canonical bases Sean Clark Northeastern - PowerPoint PPT Presentation

U q ( gl ( m | 1 )) and canonical bases Sean Clark Northeastern University / Max Planck Institute for Mathematics Algebraic Groups, Quantum Groups and Geometry Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 1 / 12 Q UANTUM


  1. U q ( gl ( m | 1 )) and canonical bases Sean Clark Northeastern University / Max Planck Institute for Mathematics Algebraic Groups, Quantum Groups and Geometry Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 1 / 12

  2. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM ALGEBRAS AND CANONICAL BASES U q ( g ) : algebra over Q ( q ) coming from root data of simple Lie algebra g . Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 2 / 12

  3. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM ALGEBRAS AND CANONICAL BASES U q ( g ) : algebra over Q ( q ) coming from root data of simple Lie algebra g . ( ∼ 1990) Lusztig and Kashiwara: miraculous bases for U − q ( g ) = U q ( n − ) (CB1) B is a Z [ q , q − 1 ] -basis of the integral form A U − q ( g ) ; (CB2) For any b ∈ B , b = b ( · is natural involution q �→ q − 1 ); (CB3) PBW → B is q Z [ q ] -unitriangular for any PBW (CB4) B induces a basis on simple modules Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 2 / 12

  4. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM SUPERALGEBRAS Question: what if g is a Lie superalgebra? Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 3 / 12

  5. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM SUPERALGEBRAS Question: what if g is a Lie superalgebra? Few examples of CBs known: ◮ osp ( 1 | 2 n ) and anisotropic Kac-Moody super [C-Hill-Wang, ’13] ◮ Partial results for gl ( m | n ) , osp ( 2 | 2 n ) [C-Hill-Wang, ’13; Du-Gu ’14] Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 3 / 12

  6. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM SUPERALGEBRAS Question: what if g is a Lie superalgebra? Few examples of CBs known: ◮ osp ( 1 | 2 n ) and anisotropic Kac-Moody super [C-Hill-Wang, ’13] ◮ Partial results for gl ( m | n ) , osp ( 2 | 2 n ) [C-Hill-Wang, ’13; Du-Gu ’14] Why partial? Problems: ◮ Different simple roots= Different U − (in general) Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 3 / 12

  7. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM SUPERALGEBRAS Question: what if g is a Lie superalgebra? Few examples of CBs known: ◮ osp ( 1 | 2 n ) and anisotropic Kac-Moody super [C-Hill-Wang, ’13] ◮ Partial results for gl ( m | n ) , osp ( 2 | 2 n ) [C-Hill-Wang, ’13; Du-Gu ’14] Why partial? Problems: ◮ Different simple roots= Different U − (in general) Workaround: in standard case, PBW basis → B = (CB1), (CB2) Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 3 / 12

  8. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM SUPERALGEBRAS Question: what if g is a Lie superalgebra? Few examples of CBs known: ◮ osp ( 1 | 2 n ) and anisotropic Kac-Moody super [C-Hill-Wang, ’13] ◮ Partial results for gl ( m | n ) , osp ( 2 | 2 n ) [C-Hill-Wang, ’13; Du-Gu ’14] Why partial? Problems: ◮ Different simple roots= Different U − (in general) Workaround: in standard case, PBW basis → B = (CB1), (CB2) ◮ if m > 1 and n > 1, this basis is not canonical! Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 3 / 12

  9. Q UANTUM ENVELOPING gl ( m | 1 ) Canonical bases Q UANTUM SUPERALGEBRAS Question: what if g is a Lie superalgebra? Few examples of CBs known: ◮ osp ( 1 | 2 n ) and anisotropic Kac-Moody super [C-Hill-Wang, ’13] ◮ Partial results for gl ( m | n ) , osp ( 2 | 2 n ) [C-Hill-Wang, ’13; Du-Gu ’14] Why partial? Problems: ◮ Different simple roots= Different U − (in general) Workaround: in standard case, PBW basis → B = (CB1), (CB2) ◮ if m > 1 and n > 1, this basis is not canonical! Workaround: when m = 1 or n = 1: canonical signed basis. Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 3 / 12

  10. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) R OOT DATA FOR gl ( m | 1 )   � m  ⊕ Z ǫ m + 1 with ( ǫ i , ǫ i ) = ( − 1 ) p ( ǫ i ) , P ∨ , �· , ·� as usual. P = i = 1 Z ǫ i ���� ���� even odd � � Φ = ǫ i − ǫ j | 1 ≤ i � = j ≤ m + 1 with simple roots Π = { α i | i ∈ I } Standard choice: Π std = { ǫ 1 − ǫ 2 , . . . , ǫ m − ǫ m + 1 } Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 4 / 12

  11. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) R OOT DATA FOR gl ( m | 1 )   � m  ⊕ Z ǫ m + 1 with ( ǫ i , ǫ i ) = ( − 1 ) p ( ǫ i ) , P ∨ , �· , ·� as usual. P = i = 1 Z ǫ i ���� ���� even odd � � Φ = ǫ i − ǫ j | 1 ≤ i � = j ≤ m + 1 with simple roots Π = { α i | i ∈ I } Standard choice: Π std = { ǫ 1 − ǫ 2 , . . . , ǫ m − ǫ m + 1 } Note: ◮ odd roots are isotropic; e.g. ( ǫ m − ǫ m + 1 , ǫ m − ǫ m + 1 ) = 1 + − 1 = 0; Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 4 / 12

  12. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) R OOT DATA FOR gl ( m | 1 )   � m  ⊕ Z ǫ m + 1 with ( ǫ i , ǫ i ) = ( − 1 ) p ( ǫ i ) , P ∨ , �· , ·� as usual. P = i = 1 Z ǫ i ���� ���� even odd � � Φ = ǫ i − ǫ j | 1 ≤ i � = j ≤ m + 1 with simple roots Π = { α i | i ∈ I } Standard choice: Π std = { ǫ 1 − ǫ 2 , . . . , ǫ m − ǫ m + 1 } Note: ◮ odd roots are isotropic; e.g. ( ǫ m − ǫ m + 1 , ǫ m − ǫ m + 1 ) = 1 + − 1 = 0; ◮ no odd simple reflection! (Still obvious S m + 1 action: Weyl groupoid) Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 4 / 12

  13. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) R OOT DATA FOR gl ( m | 1 )   � m  ⊕ Z ǫ m + 1 with ( ǫ i , ǫ i ) = ( − 1 ) p ( ǫ i ) , P ∨ , �· , ·� as usual. P = i = 1 Z ǫ i ���� ���� even odd � � Φ = ǫ i − ǫ j | 1 ≤ i � = j ≤ m + 1 with simple roots Π = { α i | i ∈ I } Standard choice: Π std = { ǫ 1 − ǫ 2 , . . . , ǫ m − ǫ m + 1 } Note: ◮ odd roots are isotropic; e.g. ( ǫ m − ǫ m + 1 , ǫ m − ǫ m + 1 ) = 1 + − 1 = 0; ◮ no odd simple reflection! (Still obvious S m + 1 action: Weyl groupoid) ◮ different choices of simple roots may have different GCMs! Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 4 / 12

  14. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) R OOT DATA FOR gl ( m | 1 )   � m  ⊕ Z ǫ m + 1 with ( ǫ i , ǫ i ) = ( − 1 ) p ( ǫ i ) , P ∨ , �· , ·� as usual. P = i = 1 Z ǫ i ���� ���� even odd � � Φ = ǫ i − ǫ j | 1 ≤ i � = j ≤ m + 1 with simple roots Π = { α i | i ∈ I } Standard choice: Π std = { ǫ 1 − ǫ 2 , . . . , ǫ m − ǫ m + 1 } Note: ◮ odd roots are isotropic; e.g. ( ǫ m − ǫ m + 1 , ǫ m − ǫ m + 1 ) = 1 + − 1 = 0; ◮ no odd simple reflection! (Still obvious S m + 1 action: Weyl groupoid) ◮ different choices of simple roots may have different GCMs!     2 − 1 0 2 − 1 0 GCMs for m = 3: − 1 2 − 1 , − 1 0 1     0 − 1 0 0 1 0 � �� � � �� � standard choice Π= { ǫ 1 − ǫ 2 ,ǫ 2 − ǫ 4 ,ǫ 4 − ǫ 3 } Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 4 / 12

  15. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) U q ( gl ( m | 1 )) � E i , F i , q h | i ∈ I , h ∈ P ∨ � Fix a choice of Π . We define U = U q (Π) = Q ( q ) subject to usual relations: e.g. q h i − q − h i q h E i q − h = q � h ,α i � E i , = E i F j − ( − 1 ) p ( i ) p ( j ) F j E i = δ ij [ E i , F j ] q − q − 1 � �� � super commutator Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 5 / 12

  16. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) U q ( gl ( m | 1 )) � E i , F i , q h | i ∈ I , h ∈ P ∨ � Fix a choice of Π . We define U = U q (Π) = Q ( q ) subject to usual relations: e.g. q h i − q − h i q h E i q − h = q � h ,α i � E i , = E i F j − ( − 1 ) p ( i ) p ( j ) F j E i = δ ij [ E i , F j ] q − q − 1 � �� � super commutator and both usual and unusual Serre relations: if p ( i ) = 1, E 2 i = F 2 i = 0 , [ E i − 1 , [ E i , [ E i + 1 , E i ] q ] q ] q = 0 � �� � super q − commutators Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 5 / 12

  17. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) U q ( gl ( m | 1 )) � E i , F i , q h | i ∈ I , h ∈ P ∨ � Fix a choice of Π . We define U = U q (Π) = Q ( q ) subject to usual relations: e.g. q h i − q − h i q h E i q − h = q � h ,α i � E i , = E i F j − ( − 1 ) p ( i ) p ( j ) F j E i = δ ij [ E i , F j ] q − q − 1 � �� � super commutator and both usual and unusual Serre relations: if p ( i ) = 1, E 2 i = F 2 i = 0 , [ E i − 1 , [ E i , [ E i + 1 , E i ] q ] q ] q = 0 � �� � super q − commutators This has standard structural features (integral form, triangular decomposition, bar-involution, . . . ) NOTE: Different Π yield different U − = Q ( q ) � F i | i ∈ I � in general! Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 5 / 12

  18. Q UANTUM ENVELOPING gl ( m | 1 ) Quantum gl ( m | 1 ) Q UANTUM SUPERALGEBRAS Theorem (C) U − (Π std ) has a canonical basis B ; that is, a basis satisfying (CB1)-(CB3), and (CB4) for most (but not all ∗ ) finite-dimensional simple modules. Main strokes of proof: Sean Clark U q ( gl ( m | 1 )) and canonical bases May 25, 2016 6 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend