quantization of group valued moment maps i
play

Quantization of group-valued moment maps I Eckhard Meinrenken June - PowerPoint PPT Presentation

Quantization of group-valued moment maps I Eckhard Meinrenken June 2, 2011 Eckhard Meinrenken Quantization of group-valued moment maps I Motivation: Moduli spaces of flat connections G a compact simply connected Lie group, invariant inner


  1. Quantization of group-valued moment maps I Eckhard Meinrenken June 2, 2011 Eckhard Meinrenken Quantization of group-valued moment maps I

  2. Motivation: Moduli spaces of flat connections G a compact simply connected Lie group, · invariant inner product on g = Lie( G ). Σ = M (Σ) = { A ∈ Ω 1 (Σ , g ) | d A + 1 2 [ A , A ] = 0 } gauge transformations Eckhard Meinrenken Quantization of group-valued moment maps I

  3. Motivation: Moduli spaces of flat connections G a compact simply connected Lie group, · invariant inner product on g = Lie( G ). Σ = M (Σ) = { A ∈ Ω 1 (Σ , g ) | d A + 1 2 [ A , A ] = 0 } gauge transformations This is a symplectic manifold ! Eckhard Meinrenken Quantization of group-valued moment maps I

  4. Motivation: Moduli spaces of flat connections G a compact simply connected Lie group, · invariant inner product on g = Lie( G ). Σ = M (Σ) = { A ∈ Ω 1 (Σ , g ) | d A + 1 2 [ A , A ] = 0 } gauge transformations This is a symplectic manifold ! (with singularities) . Eckhard Meinrenken Quantization of group-valued moment maps I

  5. Motivation: Moduli Spaces of flat connections Construction of symplectic form, after Atiyah-Bott A = Ω 1 (Σ , g ) carries symplectic form ω ( a , b ) = � Σ a · b . Eckhard Meinrenken Quantization of group-valued moment maps I

  6. Motivation: Moduli Spaces of flat connections Construction of symplectic form, after Atiyah-Bott A = Ω 1 (Σ , g ) carries symplectic form ω ( a , b ) = � Σ a · b . C ∞ (Σ , G ) acts by gauge action, g . A = Ad g ( A ) − d g g − 1 , Eckhard Meinrenken Quantization of group-valued moment maps I

  7. Motivation: Moduli Spaces of flat connections Construction of symplectic form, after Atiyah-Bott A = Ω 1 (Σ , g ) carries symplectic form ω ( a , b ) = � Σ a · b . C ∞ (Σ , G ) acts by gauge action, g . A = Ad g ( A ) − d g g − 1 , This action is Hamiltonian with moment map curv: A �→ d A + 1 2 [ A , A ] Eckhard Meinrenken Quantization of group-valued moment maps I

  8. Motivation: Moduli Spaces of flat connections Construction of symplectic form, after Atiyah-Bott A = Ω 1 (Σ , g ) carries symplectic form ω ( a , b ) = � Σ a · b . C ∞ (Σ , G ) acts by gauge action, g . A = Ad g ( A ) − d g g − 1 , This action is Hamiltonian with moment map curv: A �→ d A + 1 2 [ A , A ] Moduli space is symplectic quotient M (Σ) = curv − 1 (0) / C ∞ (Σ , G ) . Eckhard Meinrenken Quantization of group-valued moment maps I

  9. Motivation: Moduli Spaces of flat connections Holonomy description of the moduli space M (Σ) = Hom( π 1 (Σ) , G ) / G = Φ − 1 ( e ) / G where Φ: G 2 g → G (with g the genus of Σ) is the map g � a i b i a − 1 b − 1 Φ( a 1 , b 1 , . . . , a g , b g ) = . i i i =1 b 2 a 1 a 2 b 1 a 2 b 1 b 2 a 1 a 1 b 2 a 2 b 1 Eckhard Meinrenken Quantization of group-valued moment maps I

  10. Motivation: Moduli Spaces of flat connections Holonomy description of the moduli space M (Σ) = Hom( π 1 (Σ) , G ) / G = Φ − 1 ( e ) / G where Φ: G 2 g → G (with g the genus of Σ) is the map g � a i b i a − 1 b − 1 Φ( a 1 , b 1 , . . . , a g , b g ) = . i i i =1 b 2 a 1 a 2 b 1 a 2 b 1 b 2 a 1 a 1 b 2 a 2 b 1 We’d like to view Φ as a moment map, and Φ − 1 ( e ) / G as a symplectic quotient! Eckhard Meinrenken Quantization of group-valued moment maps I

  11. Group-valued moment maps θ L = g − 1 d g ∈ Ω 1 ( G , g ) left-Maurer-Cartan form θ R = d gg − 1 ∈ Ω 1 ( G , g ) right Maurer-Cartan form 12 [ θ L , θ L ] · θ L ∈ Ω 3 ( G ) η = 1 Cartan 3-form Definition (Alekseev-Malkin-M.) A q-Hamiltonian G -space ( M , ω, Φ) is a G -manifold M , with ω ∈ Ω 2 ( M ) G and Φ ∈ C ∞ ( M , G ) G , satisfying 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Eckhard Meinrenken Quantization of group-valued moment maps I

  12. Comparison Hamiltonian G -space Φ: M → g ∗ 1 ι ( ξ M ) ω = − d � Φ , ξ � , 2 d ω = 0, 3 ker( ω ) = 0. q-Hamiltonian G -space Φ: M → G 2 Φ ∗ ( θ L + θ R ) · ξ , 1 ι ( ξ M ) ω = − 1 2 d ω = − Φ ∗ η , 3 ker( ω ) ∩ ker(dΦ) = 0. Eckhard Meinrenken Quantization of group-valued moment maps I

  13. Examples: Coadjoint orbits, conjugacy classes Example → g ∗ are Hamiltonian G -spaces Co-adjoint orbits Φ: O ֒ ω ( ξ O , ξ ′ O ) µ = � µ, [ ξ, ξ ′ ] � Example Conjugacy classes Φ: C ֒ → G are q-Hamiltonian G -spaces ω ( ξ C , ξ ′ C ) a = 1 2 (Ad a − Ad a − 1 ) ξ · ξ ′ Eckhard Meinrenken Quantization of group-valued moment maps I

  14. Examples; Cotangent bundle, double Example = G × g ∗ (with cotangent lift of Cotangent bundle T ∗ G ∼ conjugation action) is Hamiltonian G -space with Φ( g , µ ) = Ad g ( µ ) − µ Example The double D ( G ) = G × G is a q-Hamiltonian G -space with Φ( a , b ) = aba − 1 b − 1 Eckhard Meinrenken Quantization of group-valued moment maps I

  15. Examples: Planes and spheres Example Even-dimensional plane C n = R 2 n is Hamiltonian U( n )-space. Example Even-dimensional sphere S 2 n is a q-Hamiltonian U( n )-space (Hurtubise-Jeffrey-Sjamaar). Eckhard Meinrenken Quantization of group-valued moment maps I

  16. Examples: Planes and spheres Example Even-dimensional plane C n = R 2 n is Hamiltonian U( n )-space. Example Even-dimensional sphere S 2 n is a q-Hamiltonian U( n )-space (Hurtubise-Jeffrey-Sjamaar). Similar examples with G = Sp( n ), and M = H P ( n ) resp. H n (Eshmatov). Eckhard Meinrenken Quantization of group-valued moment maps I

  17. Basic constructions: Products Products: If ( M 1 , ω 1 , Φ 1 ) , ( M 2 , ω 2 , Φ 2 ) are q-Hamiltonian G -spaces then so is 1 θ L · Φ ∗ ( M 1 × M 2 , ω 1 + ω 2 + 1 2 Φ ∗ 2 θ R , Φ 1 Φ 2 ) . Eckhard Meinrenken Quantization of group-valued moment maps I

  18. Basic constructions: Products Products: If ( M 1 , ω 1 , Φ 1 ) , ( M 2 , ω 2 , Φ 2 ) are q-Hamiltonian G -spaces then so is 1 θ L · Φ ∗ ( M 1 × M 2 , ω 1 + ω 2 + 1 2 Φ ∗ 2 θ R , Φ 1 Φ 2 ) . Example For instance, D ( G ) g = G 2 g is a q-Hamiltonian G -space with moment map g � a i b i a − 1 b − 1 Φ( a 1 , b 1 , . . . , a g , b g ) = . i i i =1 Eckhard Meinrenken Quantization of group-valued moment maps I

  19. Basic constructions: Reduction Reduction: If ( M , ω, Φ) is a q-Hamiltonian G -space then the symplectic quotient / G := Φ − 1 ( e ) / G M / is a symplectic manifold. with singularities Eckhard Meinrenken Quantization of group-valued moment maps I

  20. Basic constructions: Reduction Reduction: If ( M , ω, Φ) is a q-Hamiltonian G -space then the symplectic quotient C 1 C 2 C 3 / G := Φ − 1 ( e ) / G M / is a symplectic manifold. with singularities Example (and Theorem) The symplectic quotient G 2 g × C 1 × · · · × C r / / G = M (Σ r g ; C 1 , . . . , C r ) is the moduli space of flat G -bundles over a surface with boundary, with boundary holonomies in prescribed conjugacy classes. Eckhard Meinrenken Quantization of group-valued moment maps I

  21. Notation: Weyl chambers and Weyl alcoves Notation G compact and simply connected (e.g. G = SU( n )), T a maximal torus in G , t = Lie( T ), t + ∼ = t fundamental Weyl chamber, A ⊂ t + ⊂ t fundamental Weyl alcove t + A 0 0 { ξ | ker( e ad ξ − 1) = t } { ξ | ker(ad ξ ) = t } Eckhard Meinrenken Quantization of group-valued moment maps I

  22. Moment polytope For every ν ∈ g ∗ there is a unique µ ∈ t ∗ + with ν ∈ G .µ . Theorem (Atiyah, Guillemin-Sternberg, Kirwan) For a compact connected Hamiltonan G-space ( M , ω, Φ) , the set ∆( M ) = { µ ∈ t ∗ + | µ ∈ Φ( M ) } is a convex polytope. Eckhard Meinrenken Quantization of group-valued moment maps I

  23. Moment polytope For every ν ∈ g ∗ there is a unique µ ∈ t ∗ + with ν ∈ G .µ . Theorem (Atiyah, Guillemin-Sternberg, Kirwan) For a compact connected Hamiltonan G-space ( M , ω, Φ) , the set ∆( M ) = { µ ∈ t ∗ + | µ ∈ Φ( M ) } is a convex polytope. For every g ∈ G there is a unique ξ ∈ A with g ∈ G . exp( ξ ). Theorem (M-Woodward) For any connected q-Hamiltonian G-space ( M , ω, Φ) , the set ∆( M ) = { ξ ∈ A | exp( ξ ) ∈ Φ( M ) } is a convex polytope. Eckhard Meinrenken Quantization of group-valued moment maps I

  24. Application to eigenvalue problems The Hamiltonian convexity theorem gives eigenvalue inequalities for sums of Hermitian matrices with prescribed eigenvalues. (Schur-Horn problem). Eckhard Meinrenken Quantization of group-valued moment maps I

  25. Application to eigenvalue problems The Hamiltonian convexity theorem gives eigenvalue inequalities for sums of Hermitian matrices with prescribed eigenvalues. (Schur-Horn problem). The q-Hamiltonian convexity theorem gives eigenvalue inequalities for products of unitary matrices with prescribed eigenvalues. Eckhard Meinrenken Quantization of group-valued moment maps I

  26. Examples of moment polytopes (due to C. Woodward) A multiplicity-free Hamiltonian A multiplicity-free q-Hamiltonian SU(3)-space SU(3)-space Eckhard Meinrenken Quantization of group-valued moment maps I

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend