phase transitions and critical behavior in 2d dirac
play

Phase transitions and critical behavior in 2D Dirac materials Laura - PowerPoint PPT Presentation

Phase transitions and critical behavior in 2D Dirac materials Laura Classen Heidelberg, March 2017 1 / 26 Outline 2D Dirac materials From hopping electrons to Dirac fermions Ordered phases/Chiral symmetry breaking


  1. Phase transitions and critical behavior in 2D Dirac materials Laura Classen Heidelberg, March 2017 1 / 26

  2. Outline • 2D Dirac materials • From hopping electrons to Dirac fermions • Ordered phases/Chiral symmetry breaking • Multicriticality between density waves with Michael Scherer, Lukas T Janssen and Igor Herbut quantum critical • Kekul´ e order and fermion-induced quantum criticality ordered with Michael Scherer and Igor g g c Herbut 2 / 26

  3. Dirac Materials • Graphene, Silicene and Germanene • 3D Dirac materials, artificial graphenes, ... A Z.K.Liu et al Science 343 (2014) • Universal properties as consequence of Dirac spectrum Energy Metal Dirac material Insulator particle � hole excitations empty � = 0 occpuied T.O.Wehling et al Adv. Phys. 76 (2014) Crystal momentum • Semimetal - stable against weak interactions 3 / 26

  4. Graphene • In 2004 K. S. Novoselov and A. K. Geim fabricated free-standing graphene • 2D material • 1 layer of graphite • Hexagonal lattice of carbon atoms 4 / 26

  5. Free electrons in graphene • Hopping of free electrons: b k 1 y A B � c † H = − t i , A , s c j , B , s + h.c. δ K δ 1 3 Γ a M δ k � i , j � , s 1 2 x K’ a 2 • ab initio t ≈ 2 . 8 eV b 2 • Energy bands show semimetallic behavior • Half filling: at E = 0 bands touch at Dirac points K , K ′ • Linear and isotropic energy spectrum at K , K ′ Castro Neto et al, Rev. Mod. Phys. 81 (2009) 5 / 26

  6. From hopping to Dirac electrons • Approximation at low energies: Retain only modes near K , K ′ • Low energy effective action � 1 / T d τ d D − 1 x ¯ S F = Ψ γ µ ∂ µ Ψ 0 • with 8-component spinor Ψ = (Ψ ↑ , Ψ ↓ ) T and ¯ Ψ = Ψ † γ 0 � Λ Ψ † c † A , s ( K + q , ω n ) , c † B , s ( K + q , ω n ) , c † A , s ( K ′ + q , ω n ) , c † B , s ( K ′ + q , ω n ) q e i ω n τ + iq · x � � s ( x , τ ) = • and γ matrices γ 0 = ✶ 2 ⊗ σ z , γ 1 = σ z ⊗ σ y , γ 2 = ✶ 2 ⊗ σ x 6 / 26

  7. Interactions and phase transitions • Repulsive Coulomb interactions ( n i , s = c † i , A / B , s c i , A / B , s ) � � H int = U n i , ↑ n i , ↓ + V n i , s n j , s ′ 2 i � i , j � , s , s ′ � + V 2 n i , s n j , s ′ + . . . �� i , j �� , s , s ′ • Long-ranged tail unscreened, but marginally irrelevant • Short-ranged interactions can induce quantum phase transition, but critical strength needed • Different orders depending on interaction profile 7 / 26

  8. Quantum phase diagrams ED: Garc´ ıa-Mart´ ınez et al PRB 88 (2013) FRG: Pe˜ na et al arXiv:1606.01124 2.5 T= 0.046 SDW pha se SM pha se 2 • Semimetallic phase (SM) for CDW pha se 1.5 small interactions V/  1 • Spin Density Wave for large U 0.5 • Charge Density Wave for large V 0 3 4 5 6 7 U/  • Often Kekul´ e order for V ∼ V 2 V / HMC: Buividovich et al PoS (LATTICE2016) 244 8 / 26

  9. Chiral symmetry breaking d D x ¯ � • Effective low-energy theory S F = Ψ γ µ ∂ µ Ψ • Describe interaction-induced phase transitions with chiral symmetry breaking • Gross-Neveu-Yukawa theory S = S F + S B + S Y • S B : Order parameter fields • Fermion and boson coupling � d τ d D − 1 xg i ϕ i ¯ S Y = Ψ M i Ψ M CDW = ✶ M SDW = � σ M Kekule = γ 3 , γ 5 • E.g. CDW: ¯ k , s c † A , k , s c A , k , s − c † ΨΨ ∼ � B , k , s c B , k , s → Difference of sublattice densities • Generalize number of Dirac points N f (graphene N f = 2) 9 / 26

  10. FRG and truncation • Full theory in effective action Γ( g 1 , g 2 , . . . ) Γ k =Λ • Integrate out dof’s successively - Systematic O 3 implementation by (additive) regulator R k • Flow equation Wetterich PLB 301 (1993) {O i } ∂ t Γ = 1 Γ k =0 2STr(Γ (2) O 2 + R k ) − 1 ∂ t R k k O 1 with full propagator (Γ (2) + R k ) − 1 L. Fister k • Truncation � Ψ γ µ ∂ µ Ψ − 1 � � d D x Z Ψ , k ¯ 2 Z ϕ i , k ϕ i ∂ 2 g i , k ϕ i ¯ Γ k = µ ϕ i + ¯ Ψ M i Ψ + U k ( ϕ i ) • Differential equations for couplings ( β functions) encode scale evolution • Non-perturbative regime D = 2 + 1, N f = 2 directly accessible 10 / 26

  11. Fixed points and critical behavior • Fixed points ( ∂ k g i = β g i = 0) → scale-free points → 2nd order phase transition • Scaling properties given by critical exponents P. Kopietz, Springer Verlag 2010 • Extract critical exponents from linearized β functions at FP � ∂β g i � ( g j − g ∗ � β g i ( { g n } ) = j ) � ∂ g j � g n = g ∗ j n • Sign of negative eigenvalues ( ± ) determines (ir)relevant directions • Relevant directions determine stability: Is FP approachable ? • Number of tuning parameters = number of relevant directions for stable FP • No such FP → 1st order phase transition 11 / 26

  12. SDW and CDW: competition and multicriticality 12 / 26

  13. Phase diagram with U and V V • Experiment: graphene is SM V c • But close to phase transition: CDW • Compare critical interactions with e.g. cRPA 1 Wehling et al PRL 106 (2011) • Mild increase of interaction SDW SM leads to phase transition U semimetal Ulybyshev et al PRL 111 (2013) Smith, Smekal PRB 89 (2014) U c 1 • Sizable charge-density and spin-current correlations Gra phe ne Gra phite Golor, Wessel PRB 92 (2015) Ba re cRPA Ba re cRPA • Isotropic strain of ∼ 15% can U A or B (e V) 17 .0 9 .3 17 .5, 17 .7 8 .0, 8 .1 00 induce transition U 01 (e V) 8 .5 5 .5 8 .6 3 .9 U A or B (e V) 5 .4 4 .1 5 .4, 5 .4 2 .4, 2 .4 02 H.-K Tang et al PRL 115 (2015) U 03 (e V) 4 .7 3 .6 4 .7 1.9 • Separate transitions: chiral Ising/Heisenberg universality class Janssen, Herbut PRB 89 (2014), Vacca, Zambelli PRD 91 (2015), Parisen et al PRB 91 (2015), Otsuka et al, PRX 6 (2016), Knorr PRB 94 (2016),... 13 / 26

  14. Multicritical behavior in graphene V CDW mixe d V c SM SDW CDW ? χ � = 0 CDW 1 SM SDW SDW SM CDW � U φ � = 0 U c 1 SM SDW • Graphene parameters close to multicritical point • Competition of order parameters • Structure at MCP? Critical exponents? 14 / 26

  15. Coupled order parameter fields � ¯ and SDW field � � • CDW field χ = ΨΨ φ = � Ψ � σ Ψ � • Symmetry of CDW and SDW fields is ❩ 2 and O (3) • Two Yukawa terms � � � ΨΨ + g φ � d D x g χ χ ¯ φ · ¯ S Y = Ψ � σ Ψ • Coupling between different oder parameter fields � � 1 χ ) χ + 1 � φ ) � d D x 2 χ ( − ∂ 2 µ + m 2 φ · ( − ∂ 2 µ + m 2 S B = φ 2 + λ χ 8 χ 4 + λ φ � 2 + λ χφ φ 2 + . . . � � � φ · � 4 χ 2 � φ 8 15 / 26

  16. Fixed point structure • 2 tuning parameters, i.e. stable FP can have 2 relevant directions • Sign of third critical exponent determines stability 1.0 Θ 3 , B 0.5 Θ 3 0.0 � 0.5 Θ 3 , D � 1.0 2 3 4 5 10 20 50 100 N f • Two candidates for stable FP • Chiral Heisenberg + Ising for small N f • New universality from coupled FP for large N f • Mid-size N f : no stable FP → 1st order transition 16 / 26

  17. Multicritical behavior at stable FP • Determine phase structure from effective potential • Positions of minima determined by ∆ = λ χ λ φ − λ 2 χφ ∆ > 0 ∆ = 0 ∆ < 0 ∆ > 0 ∆ < 0 V V T etracritical Bicritical 1 st order V c V c CDW coexistence CDW 1 1 SDW SDW SM SM U U 1 U c 1 U c 17 / 26

  18. Phase diagram as function of N f • ∆ = λ χ λ φ − λ 2 χφ determines multiciritcal behavior B: chiral Heisenberg + Ising D: new coupled FP V V V graphene T etracritical Bicritical 1 st order V c V c V c coexistence CDW CDW CDW 1 st order MCP 1 1 1 SDW SDW SM SDW SM SM U U U U c 1 U c U c 1 1 18 / 26

  19. Kekul´ e order and fermion-induced criticality 19 / 26

  20. Kekul´ e Valence Bond Solid • Bond-dependent nearest-neighbor hopping ∆ t i ,δ c † � H K = − i , A , s c i + δ, B , s + h.c. i , s ,δ • Breaks lattice translation and rotation symmetry C 6 → C 3 • Order can be induced by sufficiently strong • electronic interactions V ∼ V 2 Hou et al (2007), Weeks/Franz (2010), Roy/Herbut (2010),... • Electron-phonon interaction Nomura et al (2009), Kharitonov (2012), Classen et al (2014),... • Observed in graphene on Copper substrate and artificial graphene t t 2 t 1 Gomes et al Nature 483 (2012) 20 / 26

  21. Low energy model for Kekul´ e order C C B • Described by complex order A A parameter φ = φ 1 + i φ 2 with C Z 3 symmetry B B A C C • Dirac fermions L F = ¯ ψγ µ ∂ µ ψ • Coupling between fermions and order parameter fields L Y = ih ¯ ψ ( φ 1 γ 3 + φ 2 γ 5 ) ψ • Cubic terms in free energy allowed µ φ + m 2 | φ | 2 + g ( φ 3 + φ ∗ 3 ) + λ | φ | 4 + . . . L B = − φ ∗ ∂ 2 21 / 26

  22. Landau Criterion and Fermion-Induced QCP F LG � Φ � � m 2 Φ 2 � g Φ 3 �ΛΦ 4 • First order transition due to cubic terms F LG � Φ � • Presence of fermion critical mode can change Landau picture → Fermion-induced quantum critical point Φ • RG picture: need stable FP for continuous transition • Here: 1 tuning parameter, i.e. stable FP would have 1 relevant direction µ φ + m 2 | φ | 2 + g ( φ 3 + φ ∗ 3 ) + λ | φ | 4 + . . . L B = − φ ∗ ∂ 2 • At Gaussian FP 2 relevant directions [ m 2 ] = 2 [ g ] = 3 − D / 2 [ λ ] = 4 − D • At interacting FP power counting modified 22 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend