gravity duals of 2d susy gauge theories
play

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES BASED ON: 0909.XXXX with E. - PowerPoint PPT Presentation

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES BASED ON: 0909.XXXX with E. Conde and A.V. Ramallo (Santiago de Compostela) [See also 0810.1053 with C. Nez, P. Merlatti and A.V. Ramallo] Daniel Aren Zrich, September 2009 OUTLINE


  1. GRAVITY DUALS OF 2D SUSY GAUGE THEORIES BASED ON: ● 0909.XXXX with E. Conde and A.V. Ramallo (Santiago de Compostela) [See also 0810.1053 with C. Núñez, P. Merlatti and A.V. Ramallo] Daniel Areán Zürich, September 2009

  2. OUTLINE ➣ INTRODUCTION. AdS/CFT and its generalisations ➣ GRAVITY DUAL OF 2d N=(1,1) from wrapped branes � � � ● Brane setup � � � � ● 10d SUGRA ansatz � � � ● Gauged SUGRA approach (7d) � � � ● Solution → Coulomb branch ➣ ADDING FLAVOR � � � ● Flavor D5s � � � ● Backreaction → smearing � � � ● Flavored solution ➣ GRAVITY DUAL OF 2d N=(2,2) from wrapped branes ➣ SUMMARY 1/12

  3. AdS 5 × S 5 N D3-branes AdS / CFT ∼ Correspondence ( α � → 0) IIB ST 4d N = 4 SU ( N ) SYM 2/12

  4. AdS 5 × S 5 N D3-branes AdS / CFT ∼ Correspondence ( α � → 0) IIB ST 4d N = 4 SU ( N ) SYM ★ d = 2 N = (2 , 2) ★ 2 (4) SUSYs GENERALISE 2 d SYM + N f flavors N = (1 , 1) ★ Conformal ★ Add Flavor (4d: Maldacena & Núñez, Gauntlett et al, Bigazzi et al) ★ USE WRAPPED BRANES (3d: Chamseddine & Volkov, Maldacena & Nastase, Schvellinger & Tran, Gomis & Russo, Gauntlett et al) 2/12

  5. DUAL TO N=(1,1) SYM FROM WRAPPED D5s ★ BRANE SETUP G 2 D5s S 4 σ X R ( ρ ) S 2 R 1 , 1 G 2 � �� � R 1 , 1 S 4 N 3 R D5 − − � � � � N 3 : ( σ , θ , φ ) · · · · 3/12

  6. DUAL TO N=(1,1) SYM FROM WRAPPED D5s ★ BRANE SETUP G 2 D5s S 4 σ X R ( ρ ) S 2 R 1 , 1 G 2 � �� � R 1 , 1 S 4 N 3 R D5 − − � � � � N 3 : ( σ , θ , φ ) · · · · ◆ G ➔ 1/8 SUSY 2 SUSYS 2 ◆ D5s (on a calibrated C ) ➔ 1/2 SUSY 4 3/12

  7. G 2 � �� � ★ SUGRA ANSATZ R 1 , 1 S 4 N 3 R D5 − − � � � � · · · · R ( ρ ) N 3 : ( σ , θ , φ ) (Bryant, Salamon) 7 = ( d σ ) 2 + σ 2 4 + σ 2 1 − a 4 � � � ( E 1 ) 2 + ( E 2 ) 2 � ◆ (resolved) cone: ds 2 2 d Ω 2 G 2 (Gibbons, Page, Pope) 1 − a 4 4 σ 4 σ 4 G 2 S 4 σ S 2 4/12

  8. G 2 � �� � ★ SUGRA ANSATZ R 1 , 1 S 4 N 3 R D5 − − � � � � · · · · R ( ρ ) N 3 : ( σ , θ , φ ) (Bryant, Salamon) 7 = ( d σ ) 2 + σ 2 4 + σ 2 1 − a 4 � � � ( E 1 ) 2 + ( E 2 ) 2 � ◆ (resolved) cone: ds 2 2 d Ω 2 G 2 (Gibbons, Page, Pope) 1 − a 4 4 σ 4 σ 4 G 2 d ξ 2 + ξ 2 � ( ω 1 ) 2 + ( ω 2 ) 2 + ( ω 3 ) 2 �� 4 ● : d Ω 2 S 4 � 4 = (1 + ξ 2 ) 2 4 S 4 σ ξ 2 S 2 E 1 = d θ + sin φ ω 1 − cos φ ω 2 � � 1 + ξ 2 ● fibered : S 2 ξ 2 ξ 2 � � E 2 = sin θ cos φ ω 1 + sin φ ω 2 � 1 + ξ 2 ω 3 � d φ − + 1 + ξ 2 cos θ 4/12

  9. G 2 � �� � R 1 , 1 S 4 N 3 R D5 − − � � � � · · · · R ( ρ ) N 3 : ( σ , θ , φ ) + e − Φ + e − Φ z ◆ 10d metric ds 2 = e Φ � � d σ 2 + σ 2 � ( E 1 ) 2 + ( E 2 ) 2 �� dx 2 m 2 d Ω 2 m 2 ( d ρ ) 2 � 1 , 1 + 4 4 m 2 z 3 ◆ 3-form C 2 = g 1 E 1 ∧ E 2 + g 2 S ξ ∧ S 3 + S 1 ∧ S 2 � � F 3 = dC 2 , 5/12

  10. G 2 � �� � R 1 , 1 S 4 N 3 R D5 − − � � � � · · · · R ( ρ ) N 3 : ( σ , θ , φ ) + e − Φ + e − Φ z ◆ 10d metric ds 2 = e Φ � � d σ 2 + σ 2 � ( E 1 ) 2 + ( E 2 ) 2 �� dx 2 m 2 d Ω 2 m 2 ( d ρ ) 2 � 1 , 1 + 4 4 m 2 z 3 ◆ 3-form C 2 = g 1 E 1 ∧ E 2 + g 2 S ξ ∧ S 3 + S 1 ∧ S 2 � � F 3 = dC 2 , z ( ρ , σ ) SIZE OF C 4 N=(1,1) BPSs SUSY Φ ( ρ , σ ) DILATON g i ( ρ , σ ) 3-FORM FLUX 5/12

  11. G 2 � �� � R 1 , 1 S 4 N 3 R D5 − − � � � � · · · · R ( ρ ) N 3 : ( σ , θ , φ ) + e − Φ + e − Φ z ◆ 10d metric ds 2 = e Φ � � d σ 2 + σ 2 � ( E 1 ) 2 + ( E 2 ) 2 �� dx 2 m 2 d Ω 2 m 2 ( d ρ ) 2 � 1 , 1 + 4 4 m 2 z 3 ◆ 3-form C 2 = g 1 E 1 ∧ E 2 + g 2 S ξ ∧ S 3 + S 1 ∧ S 2 � � F 3 = dC 2 , z ( ρ , σ ) SIZE OF C 4 N=(1,1) BPSs SUSY Φ ( ρ , σ ) DILATON g i ( ρ , σ ) 3-FORM FLUX ● BPSs are PDEs ☹ , 7d Gauged SUGRA ➞ SOLUTION ☺ 5/12

  12. ★ GAUGED SUGRA APPROACH LINEAR DISTRIBUTION OF D5S ◆ Take 7d SO(4) Gauged SUGRA Domain wall problem Uplift ● 1d problem → BPSs easy 10d solution in terms of c z ρ → R ⊥ ( R 1 , 1 , G 2 ) ( z, ψ ) σ → G 2 S 4 6/12

  13. ★ GAUGED SUGRA APPROACH LINEAR DISTRIBUTION OF D5S ◆ Take 7d SO(4) Gauged SUGRA Domain wall problem Uplift ● 1d problem → BPSs easy 10d solution in terms of c z ρ → R ⊥ ( R 1 , 1 , G 2 ) ( z, ψ ) σ → G 2 S 4 ◆ UV (z → ∞ ): ds 2 → D5s along R 1 , 1 × S 4 [ ➡ Linear dilaton ] ● Singularity (good) at z = z 0 ◆ IR (for c<-1): > z = z 0 ● Linear distribution ( ψ ) ψ 6/12

  14. � � � � � � � � G 2 � �� � R 1 , 1 S 4 N 3 R ● Changing vbles. D5 ( z, ψ ) → ( ρ , σ ) − − � � � � · · · · R ( ρ ) N 3 : ( σ , θ , φ ) ➥ Analytic (implicit) sol. for z ( ρ , σ ) e 2 � 5 z 10 4 8 3 6 2 3 � c = − 3 3 � 4 1 2 z 0 2 2 0 -2 -2 1 � � � � 1 0 0 c c � � c 2 2 c 0 0 � � 7/12

  15. � � � � � � � � G 2 � �� � R 1 , 1 S 4 N 3 R ● Changing vbles. D5 ( z, ψ ) → ( ρ , σ ) − − � � � � · · · · R ( ρ ) N 3 : ( σ , θ , φ ) ➥ Analytic (implicit) sol. for z ( ρ , σ ) e 2 � 5 z 10 4 8 3 6 2 3 � c = − 3 3 � 4 1 2 z 0 2 2 0 -2 -2 1 � � � � 1 0 0 c c � � c 2 2 c 0 0 � � Linear Distribution of D5s COULOMB BRANCH ( z = z 0 , ψ ) → ( | ρ | < ρ c , σ = 0) 7/12

  16. ★ ADDING FLAVOR Flavor ◆ Add an open string sector ➔ FLAVOR BRANES Color 8/12

  17. ★ ADDING FLAVOR Flavor ◆ Add an open string sector ➔ FLAVOR BRANES Color Flavor D5s ★ Global Sym: flavor ● Non-compact C 4 ⊂ G 2 ● Brane setup ★ m Q ∼ ρ Q ● At fixed ρ = ρ Q ★ Same SUSY 8/12

  18. ★ ADDING FLAVOR Flavor ◆ Add an open string sector ➔ FLAVOR BRANES Color Flavor D5s ★ Global Sym: flavor ● Non-compact C 4 ⊂ G 2 ● Brane setup ★ m Q ∼ ρ Q ● At fixed ρ = ρ Q ★ Same SUSY ● Probe approximation N f ≪ N c , N c → ∞ (Karch & Randall, Karch & Katz) Flavor D5 C 4 σ ρ Q Quenched flavor in the large N limit. c D5s 8/12

  19. ★ ADDING FLAVOR Flavor ◆ Add an open string sector ➔ FLAVOR BRANES Color Flavor D5s ★ Global Sym: flavor ● Non-compact C 4 ⊂ G 2 ● Brane setup ★ m Q ∼ ρ Q ● At fixed ρ = ρ Q ★ Same SUSY ● Probe approximation N f ≪ N c , N c → ∞ (Karch & Randall, Karch & Katz) Flavor D5 C 4 σ ρ Q Quenched flavor in the large N limit. c D5s Veneziano limit N f , N c → ∞ ● Backreaction N f ∼ N c Quarks loops included N f /N c fixed 8/12

  20. S = S IIB + S flavor DBI + S flavor ◆ Computing the backreaction is difficult W Z D5s D5s ➥ Smearing φ φ (Bigazzi et al, Casero et al) ρ = ρ Q ρ = ρ Q → U (1) N f U ( N f ) − 9/12

  21. S = S IIB + S flavor DBI + S flavor ◆ Computing the backreaction is difficult W Z D5s D5s ➥ Smearing φ φ (Bigazzi et al, Casero et al) ρ = ρ Q ρ = ρ Q → U (1) N f U ( N f ) − N f � � � Bianchi identity dF 3 = 2 κ 2 S flavor ˆ 10 T 5 Ω = T 5 C 6 = ⇒ − T 5 Ω ∧ C 6 W Z M ( i ) M 10 6 ➥ Ω + metric → Flavored BPSs 9/12

  22. S = S IIB + S flavor DBI + S flavor ◆ Computing the backreaction is difficult W Z D5s D5s ➥ Smearing φ φ (Bigazzi et al, Casero et al) ρ = ρ Q ρ = ρ Q → U (1) N f U ( N f ) − N f � � � Bianchi identity dF 3 = 2 κ 2 S flavor ˆ 10 T 5 Ω = T 5 C 6 = ⇒ − T 5 Ω ∧ C 6 W Z M ( i ) M 10 6 ➥ Ω + metric → Flavored BPSs ◆ D5 embeddings ( κ -symmetry) ➞ Ω , this is hard!! ● D5-branes at ρ = ρ Q ● Consistent BPSs ( ➡ EoM) generic Ω / ● Same SUSY (2) ● Color ∩ Flavor = ∅ ● No new deformations of g ab 9/12

  23. ◆ Particular charge distribution / homogeneous charge distribution along ⊥ R 3 ● Numerical solution with continuous at z, φ , g i ρ = ρ Q ● Coincides with the unflavored for ρ < ρ Q ρ = ρ Q x ≡ 18 π n f = 0 . 2 x = 1 N c 8 8 z z 4 4 6 6 2 2.8 2 2.8 4 4 4 4 � � 1.6 1 1.6 1 0 0 1 1 0.4 0.4 0.4 0.4 2 2 3 3 4 4 � � ● Flavor contributes as expected [ ] 1 /g 2 Y M ∼ z 2 ( ρ , σ = 0) 10/12

  24. ★ SUGRA DUALS OF 2D THEORIES WITH N=(2,2) SUSY CY 3 R 1 , 1 ● D5s on a 4-cycle of a CY3 ~ 2d N = (2,2) S 2 × S 2 R 2 ( ρ , χ ) σ X ◆ CY3 ➔ 1/ 4 SUSY ψ 2 SUSYS ◆ D5s ➔ 1/2 SUSY 11/12

  25. ★ SUGRA DUALS OF 2D THEORIES WITH N=(2,2) SUSY CY 3 R 1 , 1 ● D5s on a 4-cycle of a CY3 ~ 2d N = (2,2) S 2 × S 2 R 2 ( ρ , χ ) σ X ◆ CY3 ➔ 1/ 4 SUSY ψ 2 SUSYS ◆ D5s ➔ 1/2 SUSY ■ 10d Ansatz ■ Metric → z ( ρ , σ ) & ϕ ( ρ , σ ) ■ Analyt. sol ✓ BPSs ■ 3-form → g( ρ , σ ) ■ EoM ✓ [ 7d Gauged SUGRA ] 11/12

  26. ★ SUGRA DUALS OF 2D THEORIES WITH N=(2,2) SUSY CY 3 R 1 , 1 ● D5s on a 4-cycle of a CY3 ~ 2d N = (2,2) S 2 × S 2 R 2 ( ρ , χ ) σ X ◆ CY3 ➔ 1/ 4 SUSY ψ 2 SUSYS ◆ D5s ➔ 1/2 SUSY ■ 10d Ansatz ■ Metric → z ( ρ , σ ) & ϕ ( ρ , σ ) ■ Analyt. sol ✓ BPSs ■ 3-form → g( ρ , σ ) ■ EoM ✓ [ 7d Gauged SUGRA ] ■ Flavoring → D5s on a non-compact 4-cycle → Embeddings found ➥ Ω constructed → new BPSs → (Numeric) Flavored background 11/12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend