perturbative spectra in gauge theories with gravity duals
play

Perturbative spectra in gauge theories with gravity duals Christoph - PowerPoint PPT Presentation

Perturbative spectra in gauge theories with gravity duals Christoph Sieg Niels Bohr International Academy Niels Bohr Institute 22.02.10, Nordic String Meeting, Hannover C.S., A. Torrielli: 0505071 F. Fiamberti, A. Santambrogio, C.S., D.


  1. Perturbative spectra in gauge theories with gravity duals Christoph Sieg Niels Bohr International Academy Niels Bohr Institute 22.02.10, Nordic String Meeting, Hannover C.S., A. Torrielli: 0505071 F. Fiamberti, A. Santambrogio, C.S., D. Zanon: 0712.3522 0806.2095 0806.2103 0811.4594 F. Fiamberti, A. Santambrogio, C.S.: 0908.0234 J. Minahan, O. Ohlsson Sax, C.S.: 0908.2463 0912.3460

  2. Outline Introduction and overview Perturbative calculations Conclusions and outlook

  3. AdS / CFT correspondence energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O L ∝ tr φ i 1 . . . φ i L integrable systems [Bena, Polchinski, Roiban] [Kazakov, Marshakov, [Minahan, Zarembo] (asymptot.) Bethe ansätze Minahan, Zarembo] [Beisert, Dippel, Staudacher] string gauge [Arutyunov, Frolov, Staudacher] dressing phase [Beisert, Hernandez, Lopez] [Beisert, Eden, Staudacher]

  4. AdS / CFT correspondence energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O S ∝ tr φ D S φ integrable systems [Bena, Polchinski, Roiban] [Kazakov, Marshakov, [Minahan, Zarembo] (asymptot.) Bethe ansätze Minahan, Zarembo] [Beisert, Dippel, Staudacher] string gauge [Arutyunov, Frolov, Staudacher] [ D , Q i ] = 0 dressing phase [Beisert, Hernandez, Lopez] [Beisert, Eden, Staudacher] dilatation operator [Beisert, Kristjansen, Staudacher] D � O L = γ � O L Feynman graph computations in the flavour SU ( 2 ) subsector: 1-loop: [Berenstein, Maldacena, Nastase] 2-loops: [Gross, Mikhailov, Roiban] checks at higher loops: [Gross, Mikhailov, Roiban] [Beisert, McLoughlin, Roiban] [Fiamberti, Santambrogio, CS, Zanon] [Fiamberti, Santambrogio, CS]

  5. AdS / CFT correspondence energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O S ∝ tr φ D S φ integrable systems [Bena, Polchinski, Roiban] [Kazakov, Marshakov, [Minahan, Zarembo] (asymptot.) Bethe ansätze Minahan, Zarembo] [Beisert, Dippel, Staudacher] string gauge [Arutyunov, Frolov, Staudacher] dressing phase [Beisert, Hernandez, Lopez] [Beisert, Eden, Staudacher] [Gubser, Klebanov, Polyakov] [Kotikov, Lipatov, Velizhanin [Frolov, Tseytlin] [Kruczenski] [Makeenko] S ≫ 1 integral eq. for f ( λ ) √ 2 π 2 − ζ ( 2 ) λ 2 π − 3 λ λ π ln 2 λ ≫ 1 λ ≪ 1 16 π 4 [Eden, Staudacher] [Benna, Benvenuti, Klebanov, Sardicchio] [Casteill, Kristjansen] [Alday, Arutyunov, Benna, Eden, Klebanov] [Basso, Korchemsky, Kotanski]

  6. AdS / CFT correspondence energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O S ∝ tr φ D S φ integrable systems [Bena, Polchinski, Roiban] [Kazakov, Marshakov, [Minahan, Zarembo] (asymptot.) Bethe ansätze Minahan, Zarembo] [Beisert, Dippel, Staudacher] string gauge [Arutyunov, Frolov, Staudacher] dressing phase [Beisert, Hernandez, Lopez] [Beisert, Eden, Staudacher] S = 2 Konishi multiplet tr φ i φ i tr φ D 2 φ tr φ [ φ, Z ] Z � �� � L = 4 � γ asy = λ k γ k k < L

  7. AdS / CFT correspondence energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O S ∝ tr φ D S φ integrable systems [Bena, Polchinski, Roiban] [Kazakov, Marshakov, [Minahan, Zarembo] (asymptot.) Bethe ansätze Minahan, Zarembo] [Beisert, Dippel, Staudacher] string gauge [Arutyunov, Frolov, Staudacher] dressing phase [Beisert, Hernandez, Lopez] [Beisert, Eden, Staudacher] S = 2 wrapping interactions finite size effects [C.S.,Torrielli] [Ambjørn, Janik, Kristjansen] [Schafer-Nameki] Konishi multiplet [Janik, Lukowski] tr φ i φ i tr φ D 2 φ tr φ [ φ, Z ] Z � �� � thermodyn. Bethe ansatz L = 4 L = 4 loop [Arutyunov, Frolov] � Y-system γ asy = λ k γ k Feynman graphs [Gromov, Kazakov, Vieira] [Fiamberti,Santambrogio,C.S.,Zanon] k < L (gen.) Lüscher formula [Bajnok,Janik] γ = γ asy + λ 4 γ 4 + . . .

  8. AdS 4 / CFT 3 (ABJM) correspondence [Aharony, Bergman, Jafferis, Maldacena] Type II A ST AdS 4 × CP 3 ⇔ 3-dim. N = 6 CS theory energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O J ∝ tr φ n 1 . . . φ n J integrable systems [Arutyunov, Frolov] [Minahan, Zarembo] [Stefanski] (asymptot.) Bethe ansätze [Bak, Rey] [Gromov, Vieira] [Gromov, Vieira] [Ahn, Nepomechie] magnon dispersion relation [Beisert, Dippel, Staudacher] [Beisert] [Arutyunov, Frolov, Zamaklar] � Q 2 + 4 h ( λ ) 2 sin 2 p E = 2 − Q h ( λ ) 2 = ? h ( λ ) 2 = λ 4 π 2 unexpectedly simple in AdS 5 / CFT 4

  9. AdS 4 / CFT 3 (ABJM) correspondence [Aharony, Bergman, Jafferis, Maldacena] Type II A ST AdS 4 × CP 3 ⇔ 3-dim. N = 6 CS theory energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O J ∝ tr φ n 1 . . . φ n J integrable systems [Arutyunov, Frolov] [Minahan, Zarembo] [Stefanski] (asymptot.) Bethe ansätze [Bak, Rey] [Gromov, Vieira] [Gromov, Vieira] [Ahn, Nepomechie] magnon dispersion relation BMN limit [Beisert, Dippel, Staudacher] [Beisert] giant magnons [Arutyunov, Frolov, Zamaklar] � [Nishioka, Takayanagi] Q 2 + 4 h ( λ ) 2 sin 2 p E = 2 − Q [Gaiotto, Giombi, Yin] [Grignani, Harmark, Orselli] two loops quantum corr. [Nishioka, Takayanagi] [McLoughlin, Roiban, Tseytlin] [Minahan, Zarembo] [Bak, Rey] � h ( λ ) 2 = ? λ λ ln 2 λ 2 2 − 2 π h ( λ ) 2 = λ 4 π 2 unexpectedly simple in AdS 5 / CFT 4

  10. AdS 4 / CFT 3 (ABJM) correspondence [Aharony, Bergman, Jafferis, Maldacena] Type II A ST AdS 4 × CP 3 ⇔ 3-dim. N = 6 CS theory energy E anom. dim. γ λ ≫ 1 λ ≪ 1 (semicl.) strings comp. operators O J ∝ tr φ n 1 . . . φ n J integrable systems [Arutyunov, Frolov] [Minahan, Zarembo] [Stefanski] (asymptot.) Bethe ansätze [Bak, Rey] [Gromov, Vieira] [Gromov, Vieira] [Ahn, Nepomechie] magnon dispersion relation BMN limit [Beisert, Dippel, Staudacher] four loops [Beisert] giant magnons [Arutyunov, Frolov, Zamaklar] [Minahan, Ohlsson Sax, C.S.] � [Nishioka, Takayanagi] Q 2 + 4 h ( λ ) 2 sin 2 p E = 2 − Q [Gaiotto, Giombi, Yin] [Grignani, Harmark, Orselli] two loops quantum corr. [Nishioka, Takayanagi] [McLoughlin, Roiban, Tseytlin] [Minahan, Zarembo] [Bak, Rey] � h ( λ ) 2 = ? λ 2 + λ 4 ( − 16 + 4 ζ ( 2 )) λ λ ln 2 2 − 2 π h ( λ ) 2 = λ 4 π 2 unexpectedly simple in AdS 5 / CFT 4

  11. Renormalization of composite operators � composite operator O L = L of length L (with L scalar fields) two-point functions of composite operators: tree level δ AB O A L ( x ) , 1 , O B � L ( y ) � ∆ = L = = ( x − y ) 2 ∆ , x y

  12. Renormalization of composite operators � composite operator O L = L of length L (with L scalar fields) two-point functions of composite operators: with loop corrections δ AB O A L ( x ) , V 2 L , O B � L ( y ) � ∆ = L + γ + . . . = V = ( x − y ) 2 ∆ , x y

  13. Renormalization of composite operators � composite operator O L = L of length L (with L scalar fields) two-point functions of composite operators: with loop corrections δ AB O A L ( x ) , V 2 L , O B � L ( y ) � ∆ = L + γ + . . . = V = ( x − y ) 2 ∆ , x y renormalization of composite operators in a CFT in D = 4 − 2 ε dimensions D = µ d O a L , ren = Z a b O b d µ ln Z ( λµ 2 ε ) L , bare ,

  14. Renormalization of composite operators � composite operator O L = L of length L (with L scalar fields) two-point functions of composite operators: with loop corrections δ AB O A L ( x ) , V 2 L , O B � L ( y ) � ∆ = L + γ + . . . = V = ( x − y ) 2 ∆ , x y renormalization of composite operators in a CFT in D = 4 − 2 ε dimensions D = µ d O a L , ren = Z a b O b d µ ln Z ( λµ 2 ε ) L , bare , anomalous dimensions: � λ k D k eigenvalues of the dilatation operator D = k ≥ 1 D � O L = γ � O L

  15. Bethe ansatz in the flavour SU ( 2 ) subsector 2 ( φ 1 + i φ 2 ) , ψ = 2 ( φ 3 + i φ 4 ) , Z = 2 ( φ 5 + i φ 6 ) 1 1 1 complex fields: φ = √ √ √ ψ only as internal flavour in Feynman diagrams

  16. Bethe ansatz in the flavour SU ( 2 ) subsector 2 ( φ 1 + i φ 2 ) , ψ = 2 ( φ 3 + i φ 4 ) , Z = 2 ( φ 5 + i φ 6 ) 1 1 1 complex fields: φ = √ √ √ ψ only as internal flavour in Feynman diagrams map to integrable spin chain of length L ZZZ . . . Z O L = tr ( φ . . . φ ) ↔ � �� � � �� � M L − M BPS operator tr ( Z . . . Z ) ↔ ferromagnetic vaccum impurities φ ↔ spin excitations (magnons) Hamiltonian H dilatation operator D ↔ energies E ↔ anomalous dimensions γ

  17. Bethe ansatz in the flavour SU ( 2 ) subsector 2 ( φ 1 + i φ 2 ) , ψ = 2 ( φ 3 + i φ 4 ) , Z = 2 ( φ 5 + i φ 6 ) 1 1 1 complex fields: φ = √ √ √ ψ only as internal flavour in Feynman diagrams map to integrable spin chain of length L ZZZ . . . Z O L = tr ( φ . . . φ ) ↔ � �� � � �� � M L − M BPS operator tr ( Z . . . Z ) ↔ ferromagnetic vaccum impurities φ ↔ spin excitations (magnons) Hamiltonian H = H XXX 1 / 2 + . . . dilatation operator D ↔ energies E ↔ anomalous dimensions γ operator mixing problem solved by the asymptotic Bethe ansatz M M M S ( u j , u k ) e 2 i θ ( u j , u k ) , E = �� � π 2 sin 2 p j � � � p j = 0 , e ip j L = ˆ 1 + λ 2 − 1 j = 1 k � = j j = 1 matrix part dressing phase momentum single magnon conservation dispersion relation two-particle S-matrix

  18. b b b b b One loop � � � � i tr ( ψ [ Z ,φ ]) = i − i tr ( ¯ ψ [¯ φ, ¯ Z ]) = − i − , − = − = =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend