spontaneous symmetry breaking topology of the superfluid
play

Spontaneous Symmetry Breaking & Topology of the Superfluid - PowerPoint PPT Presentation

International Conference on Ultra-Low Temperature Physics, Heidelberg, Germany Spontaneous Symmetry Breaking & Topology of the Superfluid Phases of 3 He J. A. Sauls Department of Physics & Astronomy Northwestern University, Evanston,


  1. International Conference on Ultra-Low Temperature Physics, Heidelberg, Germany Spontaneous Symmetry Breaking & Topology of the Superfluid Phases of 3 He J. A. Sauls Department of Physics & Astronomy Northwestern University, Evanston, Illinois, USA August 18, 2017 ◮ Symmetry & Broken Symmetry of 3 He ◮ Topology of the Bulk Phases ◮ Dynamical Consequences: ◮ Signatures: Bosonic Spectrum Weyl & Majorana Fermions • Research supported by US National Science Foundation Grant DMR-1508730

  2. Spin-Fluctuation Mediated Pairing � Odd-Parity, Spin-Triplet Pairing for 3 He A. Layzer and D. Fay, Int. J. Magn. 1, 135 (1971) ◮ 3 . 0 − g/ 4 V sf = 2 . 5 p ′ ↑ 1 − g χ ( q ) − p ′ ↑ g 2 . 0 = V exch ( q ) = 1 − g χ ( q ) 1 . 5 p ↑ − p ↑ � d Ω ˆ � d Ω ˆ 1 . 0 p ′ p 4 π V sf ( p , p ′ ) P p ′ ) − g l = ( 2 l + 1 ) l ( ˆ p · ˆ 0 . 5 q ≈ ¯ h/ξ sf q/p f 4 π 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 − g l is a function of g ≈ 0 . 75 ◮ & ξ sf ≈ 5 ¯ h / p f ◮ l = 1 (p-wave) is dominant pairing channel p e + i φ ˆ p ◮ p x + i ˆ ˆ p y ∼ sin θ ˆ � l z = + 1 ◮ p z ∼ cos θ ˆ ˆ � l z = 0 p p e − i φ ˆ ◮ p x − i ˆ p y ∼ sin θ ˆ p � l z = − 1 ˆ ◮ S = 1 , S z = 0 , ± 1 pairing fluctuations

  3. Spin-Fluctuation Mediated Pairing � Odd-Parity, Spin-Triplet Pairing for 3 He A. Layzer and D. Fay, Int. J. Magn. 1, 135 (1971) ◮ 3 . 0 − g/ 4 V sf = 2 . 5 p ′ ↑ 1 − g χ ( q ) − p ′ ↑ g 2 . 0 = V exch ( q ) = 1 − g χ ( q ) 1 . 5 p ↑ − p ↑ � d Ω ˆ � d Ω ˆ 1 . 0 p ′ p 4 π V sf ( p , p ′ ) P p ′ ) − g l = ( 2 l + 1 ) l ( ˆ p · ˆ 0 . 5 q ≈ ¯ h/ξ sf q/p f 4 π 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 − g l is a function of g ≈ 0 . 75 ◮ ◮ Feedback on V s f � & ξ sf ≈ 5 ¯ h / p f Multiple Stable Superfluid Phases ◮ l = 1 (p-wave) is dominant ∆ ⋆ − p ′ ↑ pairing channel p ′ ↑ p ↑ − p ↑ p e + i φ ˆ p ◮ p x + i ˆ ˆ p y ∼ sin θ ˆ � l z = + 1 ∆ δ χ pair ◮ p z ∼ cos θ ˆ ˆ � l z = 0 p p e − i φ ˆ ◮ p x − i ˆ p y ∼ sin θ ˆ p � l z = − 1 ˆ χ A ≈ χ N > χ B � 1 3 χ N � Superfluid A-phase ◮ S = 1 , S z = 0 , ± 1 pairing W. Brinkman, J. Serene, & P. Anderson, PRA 10, 2386 (1974) ◮ fluctuations

  4. Spin-Fluctuation Mediated Pairing � Odd-Parity, Spin-Triplet Pairing for 3 He A. Layzer and D. Fay, Int. J. Magn. 1, 135 (1971) ◮ 3 . 0 − g/ 4 V sf = 2 . 5 p ′ ↑ 1 − g χ ( q ) − p ′ ↑ g 2 . 0 = V exch ( q ) = 1 − g χ ( q ) 1 . 5 p ↑ − p ↑ � d Ω ˆ � d Ω ˆ 1 . 0 p ′ p 4 π V sf ( p , p ′ ) P p ′ ) − g l = ( 2 l + 1 ) l ( ˆ p · ˆ 0 . 5 q ≈ ¯ h/ξ sf q/p f 4 π 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 − g l is a function of g ≈ 0 . 75 ◮ ◮ Feedback on V s f � & ξ sf ≈ 5 ¯ h / p f Multiple Stable Superfluid Phases ◮ l = 1 (p-wave) is dominant ∆ ⋆ − p ′ ↑ pairing channel p ′ ↑ p ↑ − p ↑ p e + i φ ˆ p ◮ p x + i ˆ ˆ p y ∼ sin θ ˆ � l z = + 1 ∆ δ χ pair ◮ p z ∼ cos θ ˆ ˆ � l z = 0 p p e − i φ ˆ ◮ p x − i ˆ p y ∼ sin θ ˆ p � l z = − 1 ˆ χ A ≈ χ N > χ B � 1 3 χ N � Superfluid A-phase ◮ S = 1 , S z = 0 , ± 1 pairing W. Brinkman, J. Serene, & P. Anderson, PRA 10, 2386 (1974) ◮ fluctuations Liquid 3 He is near a Mott transition & Solid is AFM Ordered ◮ Not the Whole Story: ◮ Normal 3 He: an almost localized Fermi liquid, D. Vollhardt, RMP 56, 99 (1984)

  5. Spin-Fluctuation Mediated Pairing � Odd-Parity, Spin-Triplet Pairing for 3 He A. Layzer and D. Fay, Int. J. Magn. 1, 135 (1971) ◮ 3 . 0 − g/ 4 V sf = 2 . 5 p ′ ↑ 1 − g χ ( q ) − p ′ ↑ g 2 . 0 = V exch ( q ) = 1 − g χ ( q ) 1 . 5 p ↑ − p ↑ � d Ω ˆ � d Ω ˆ 1 . 0 p ′ p 4 π V sf ( p , p ′ ) P p ′ ) − g l = ( 2 l + 1 ) l ( ˆ p · ˆ 0 . 5 q ≈ ¯ h/ξ sf q/p f 4 π 0 . 0 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 − g l is a function of g ≈ 0 . 75 ◮ ◮ Feedback on V s f � & ξ sf ≈ 5 ¯ h / p f Multiple Stable Superfluid Phases ◮ l = 1 (p-wave) is dominant ∆ ⋆ − p ′ ↑ pairing channel p ′ ↑ p ↑ − p ↑ p e + i φ ˆ p ◮ p x + i ˆ ˆ p y ∼ sin θ ˆ � l z = + 1 ∆ δ χ pair ◮ p z ∼ cos θ ˆ ˆ � l z = 0 p p e − i φ ˆ ◮ p x − i ˆ p y ∼ sin θ ˆ p � l z = − 1 ˆ χ A ≈ χ N > χ B � 1 3 χ N � Superfluid A-phase ◮ S = 1 , S z = 0 , ± 1 pairing W. Brinkman, J. Serene, & P. Anderson, PRA 10, 2386 (1974) ◮ fluctuations Liquid 3 He is near a Mott transition & Solid is AFM Ordered ◮ Not the Whole Story: ◮ Normal 3 He: an almost localized Fermi liquid, D. Vollhardt, RMP 56, 99 (1984) Poster Fri-038, Joshua Wiman

  6. Superfluid Phases of 3 He Maximal Symmetry G = SO ( 3 ) S × SO ( 3 ) L × U ( 1 ) N × P × T × C → “Isotropic” BW Chiral AM State � l = ˆ z J. Wiman & J. A. Sauls, PRB 92, 144515 (2015) State 34 A 30 T AB 24 B p/ bar 18 p PCP L z = 1 , S z ′ = 0 12 J = 0 , J z = 0 T c 6 H = U ( 1 ) S × U ( 1 ) L z -N × Z 2 H = SO ( 3 ) J × T 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 T/ mK � Ψ ↑↑ � Ψ ↑↓ � ← Ψ αβ ( p ) = � ψ α ( p ) ψ β ( − p ) � Spin-Triplet Condensate Amplitudes : Ψ = Ψ ↑↓ Ψ ↓↓ � � p x − ip y ∼ e − i φ p z � Ψ BW = ∆ p x + ip y ∼ e + i φ p z � � p x + ip y ∼ e + i φ 0 � Ψ AM = ∆ p x + ip y ∼ e + i φ 0 Ψ AM = | ∆ | 2 sin 2 θ Fully Gapped: � Ψ † BW � Ψ BW = | ∆ | 2 Nodal Points: � Ψ † AM �

  7. Dynamical Consequences of Spontaneous Symmetry Breaking New Bosonic Excitations

  8. Dynamical Consequences of Spontaneous Symmetry Breaking New Bosonic Excitations

  9. Dynamical Consequences of Spontaneous Symmetry Breaking Higgs Boson with mass M = 125 GeV -1 -1 CMS s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 5.3 fb S/(S+B) Weighted Events / 1.5 GeV Events / 1.5 GeV Unweighted 1500 1500 1000 1000 120 130 m (GeV) γ γ Data 500 S+B Fit B Fit Component 1 ± σ 2 ± σ 0 110 120 130 140 150 m (GeV) γ γ

  10. Dynamical Consequences of Spontaneous Symmetry Breaking Scalar Higgs Boson (spin J = 0 ) [P. Higgs, PRL 13, 508 1964] Energy Functional for the Higgs Field F [Ψ] 0 . 4 � � 2 c 2 | ∇∆ | 2 � 0 . 3 α | ∆ | 2 + β | ∆ | 4 + 1 0 . 2 U [ ∆ ] = dV α > 0 0 . 1 0 . 0 − 0 . 1 − 0 . 2 � − 0 . 3 | α | / 2 β ◮ Broken Symmetry State: ∆ = − 0 . 4 α < 0 0 . 5 Im Ψ 0 . 0 − 0 . 5 0 . 0 − 0 . 5 Re Ψ 0 . 5 − 1 . 0 1 . 0 Space-Time Fluctuations about the Broken Symmetry Vacuum State ∆ ( r , t ) = ∆ + D ( r , t ) ◮ Eigenmodes: D ( ± ) = D ± D ∗ (Conjugation Parity) � 1 � � D ( − ) ) 2 ] − 2 ∆ 2 ( D (+) ) 2 − 1 D (+) ) 2 +( ˙ 2 [ c 2 ( ∇ D (+) ) 2 + c 2 ( ∇ D ( − ) ) 2 ] d 3 r 2 [( ˙ L = t D ( − ) − c 2 ∇ 2 D ( − ) = 0 t D (+) − c 2 ∇ 2 D (+) + 4 ∆ 2 D (+) = 0 ◮ ∂ 2 ◮ ∂ 2 Massless Nambu-Goldstone Mode Massive Higgs Mode: M = 2 ∆

  11. Dynamical Consequences of Spontaneous Symmetry Breaking BCS Condensation of Spin-Singlet ( S = 0 ), S-wave ( L = 0 ) “Scalar” Cooper Pairs Ginzburg-Landau Functional F [Ψ] 0 . 4 � � α | ∆ | 2 + β | ∆ | 4 + κ | ∇∆ | 2 � 0 . 3 0 . 2 F [ ∆ ] = dV α > 0 0 . 1 0 . 0 − 0 . 1 � − 0 . 2 − 0 . 3 ◮ Order Parameter: ∆ = | α | / 2 β − 0 . 4 α < 0 0 . 5 Im Ψ 0 . 0 − 0 . 5 0 . 0 − 0 . 5 Re Ψ 0 . 5 − 1 . 0 1 . 0 Space-Time Fluctuations of the Condensate Order Parameter ∆ ( r , t ) = ∆ + D ( r , t ) ◮ Eigenmodes: D ( ± ) = D ± D ∗ (Fermion “Charge” Parity) � 1 � � D ( − ) ) 2 ] − 2 ∆ 2 ( D (+) ) 2 − 1 D (+) ) 2 +( ˙ 2 [ v 2 ( ∇ D (+) ) 2 + v 2 ( ∇ D ( − ) ) 2 ] d 3 r 2 [( ˙ L = t D ( − ) − v 2 ∇ 2 D ( − ) = 0 t D (+) − v 2 ∇ 2 D (+) + 4 ∆ 2 D (+) = 0 ◮ ∂ 2 ∂ 2 ◮ Anderson-Bogoliubov Mode Amplitude Higgs Mode: M = 2 ∆

  12. Ginzburg-Landau Functional for Superfluid 3 He ◮ Maximal Symmetry of 3 He: G = SO ( 3 ) L × SO ( 3 ) S × U ( 1 ) N × P × T × C ◮ Order Parameter for P-wave ( L = 1 ), Spin-Triplet ( S = 1 ) Pairing Orbital Basis � �� �     Spin Basis � �� � A xx A xy A xz p x ˆ � � �  ×    Ψ ( ˆ p ) = S x S y S z × A yx A yy A yz p y ˆ A zx A zy A zz p z ˆ

  13. Ginzburg-Landau Functional for Superfluid 3 He ◮ Maximal Symmetry of 3 He: G = SO ( 3 ) L × SO ( 3 ) S × U ( 1 ) N × P × T × C ◮ Order Parameter for P-wave ( L = 1 ), Spin-Triplet ( S = 1 ) Pairing Orbital Basis � �� �     Spin Basis � �� � A xx A xy A xz p x ˆ � � �  ×    Ψ ( ˆ p ) = S x S y S z × A yx A yy A yz p y ˆ A zx A zy A zz p z ˆ ◮ GL Functional: A α i � vector under both SO ( 3 ) S [ α ] and SO ( 3 ) L [ i ] � � � AA † � � � AA † �� 2 + β 1 | Tr { AA tr }| 2 + β 2 d 3 r U [ A ] = α ( T ) Tr Tr � ( AA † ) 2 � � AA † ( AA † ) ∗ � β 3 Tr { AA tr ( AA tr ) ∗ } + β 4 Tr + + β 5 Tr � κ 1 ∂ i A α j ∂ i A ∗ α j + κ 2 ∂ i A α i ∂ j A ∗ α j + κ 3 ∂ i A α j ∂ j A ∗ + α i ◮ Mermin, Ambegaokar, Brinkman, Anderson, circa 1974

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend