spontaneous symmetry breaking topological order in
play

Spontaneous Symmetry Breaking & Topological Order in Superfluid 3 - PowerPoint PPT Presentation

TMS Intensive-Interactive Meeting, Keio University, November 17-18, 2016 Spontaneous Symmetry Breaking & Topological Order in Superfluid 3 He J. A. Sauls Northwestern University Supported by National Science Foundation Grant DMR-1508730


  1. TMS Intensive-Interactive Meeting, Keio University, November 17-18, 2016 Spontaneous Symmetry Breaking & Topological Order in Superfluid 3 He J. A. Sauls Northwestern University Supported by National Science Foundation Grant DMR-1508730 • Oleksii Shevtsov • Hao Wu • Joshua Wiman • Takeshi Mizushima (Osaka University) ◮ Spontaneous Symmetry Breaking in 3 He ◮ Topological Order in Chiral Superfluids ◮ Nambu-Goldstone & Higgs Modes ◮ Chiral Fermions & Edge Currents ◮ Anomalous Hall Effect in 3 He-A ◮ Nambu’s Fermion-Boson Mass Relation

  2. Ferromagnetic Spin Fluctuations � Odd-Parity, Spin-Triplet Pairing for 3 He A. Layzer and D. Fay, Int. J. Magn. 1, 135 (1971) ◮ − p ′ ↑ p ′ ↑ − g / 4 V sf ( p , p ′ ) = = 1 − g χ ( p − p ′ ) p ↑ − p ↑ � d Ω ˆ � d Ω ˆ p p ′ V sf ( p , p ′ ) P l (ˆ p ′ ) − g l = (2 l + 1) p · ˆ 4 π 4 π − g l is a function of g ≈ 0 . 75 and ξ sf ≈ 5 � /p f ◮ 3 . 0 ◮ l = 1 (p-wave) is dominant pairing channel − g/ 4 V sf = 2 . 5 1 − g χ ( q ) ◮ p-wave basis functions: 2 . 0 p z ∼ cos θ ˆ ˆ p 1 . 5 p e + iφ ˆ p x + i ˆ ˆ p y ∼ sin θ ˆ p 1 . 0 p e − iφ ˆ p x − i ˆ ˆ p y ∼ sin θ ˆ p 0 . 5 q ≈ ¯ h/ξ sf q/p f ◮ S = 1 pairing fluctuations in V sf � 0 . 0 Multiple P-wave Superfluid Phases 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 W. Brinkman, J. Serene, and P. Anderson, PRA 10, 2386 (1974)

  3. The 3 He Paradigm: Maximal Symmetry G = SO ( 3 ) S × SO ( 3 ) L × U ( 1 ) N × P × T Ψ αβ ( p ) = � ψ α ( p ) ψ β ( − p ) � BCS Condensate Amplitude : “Isotropic” BW State J. Wiman & J. A. Sauls, PRB 92, 144515 (2015) 34 A 30 T AB 24 B p/ bar 18 p PCP 12 J = 0 , J z = 0 T c 6 H = SO ( 3 ) J × T 0 Chiral AM State � l = ˆ z 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 T/ mK � � � Ψ ↑↑ � p x − ip y ∼ e − iφ Ψ ↑↓ p z = Ψ ↑↓ Ψ ↓↓ p x + ip y ∼ e + iφ p z BW � � � Ψ ↑↑ � p x + ip y ∼ e + iφ Ψ ↑↓ 0 L z = 1 , S z = 0 = Ψ ↑↓ Ψ ↓↓ p x + ip y ∼ e + iφ 0 AM H = U ( 1 ) S × U ( 1 ) L z -N × Z 2

  4. Ginzburg-Landau Functional for Superfluid 3 He ◮ Maximal Symmetry of 3 He: G = SO ( 3 ) L × SO ( 3 ) S × U ( 1 ) N × P × T ◮ Order Parameter for P-wave ( L = 1 ), Spin-Triplet ( S = 1 ) Pairing Orbital Basis � �� �     Spin Basis A xx A xy A xz p x ˆ � �� � � � �   ×   Ψ(ˆ p ) = S x S y S z × A yx A yy A yz p y ˆ A zx A zy A zz p z ˆ ◮ GL Functional: A αi � vector under both SO ( 3 ) S [ α ] and SO ( 3 ) L [ i ] � � � AA † � � � AA † �� 2 + β 1 | Tr { AA tr }| 2 + β 2 d 3 r U [ A ] = α ( T ) Tr Tr � ( AA † ) 2 � � AA † ( AA † ) ∗ � β 3 Tr { AA tr ( AA tr ) ∗ } + β 4 Tr + + β 5 Tr � κ 1 ∂ i A αj ∂ i A ∗ αj + κ 2 ∂ i A αi ∂ j A ∗ αj + κ 3 ∂ i A αj ∂ j A ∗ + αi

  5. Dynamical Consequences of Spontaneous Symmetry Breaking New Bosonic Excitations

  6. Dynamical Consequences of Spontaneous Symmetry Breaking Higgs Boson with mass M = 125 GeV -1 -1 CMS s = 7 TeV, L = 5.1 fb s = 8 TeV, L = 5.3 fb S/(S+B) Weighted Events / 1.5 GeV Events / 1.5 GeV Unweighted 1500 1500 1000 1000 120 130 m (GeV) γ γ Data 500 S+B Fit B Fit Component 1 ± σ 2 ± σ 0 110 120 130 140 150 m (GeV) γ γ

  7. Dynamical Consequences of Spontaneous Symmetry Breaking Scalar Higgs Boson (spin J = 0 ) [P. Higgs, PRL 13, 508 1964] Energy Functional for the Higgs Field F [Ψ] 0 . 4 � 0 . 3 � 2 c 2 | ∇ ∆ | 2 � α | ∆ | 2 + β | ∆ | 4 + 0 . 2 1 U [∆] = dV α > 0 0 . 1 0 . 0 − 0 . 1 − 0 . 2 � − 0 . 3 ◮ Broken Symmetry State: ∆ = | α | / 2 β − 0 . 4 α < 0 0 . 5 Im Ψ 0 . 0 − 0 . 5 0 . 0 − 0 . 5 Re Ψ 0 . 5 − 1 . 0 1 . 0 Space-Time Fluctuations about the Broken Symmetry Vacuum State ∆( r , t ) = ∆ + D ( r , t ) ◮ Eigenmodes: D ( ± ) = D ± D ∗ (Conjugation Parity) � 1 � � D ( − ) ) 2 ] − 2∆ 2 ( D (+) ) 2 − 1 D (+) ) 2 + ( ˙ 2[ c 2 ( ∇ D (+) ) 2 + c 2 ( ∇ D ( − ) ) 2 ] d 3 r 2[( ˙ L = t D (+) − c 2 ∇ 2 D (+) + 4∆ 2 D (+) = 0 t D ( − ) − c 2 ∇ 2 D ( − ) = 0 ◮ ∂ 2 ◮ ∂ 2 Massless Nambu-Goldstone Mode Massive Higgs Mode: M = 2∆

  8. Dynamical Consequences of Spontaneous Symmetry Breaking BCS Condensation of Spin-Singlet ( S = 0 ), S-wave ( L = 0 ) “Scalar” Cooper Pairs Ginzburg-Landau Functional F [Ψ] 0 . 4 � 0 . 3 � α | ∆ | 2 + β | ∆ | 4 + κ | ∇ ∆ | 2 � 0 . 2 F [∆] = dV α > 0 0 . 1 0 . 0 − 0 . 1 − 0 . 2 � − 0 . 3 ◮ Order Parameter: ∆ = | α | / 2 β − 0 . 4 α < 0 0 . 5 Im Ψ 0 . 0 − 0 . 5 0 . 0 − 0 . 5 Re Ψ 0 . 5 − 1 . 0 1 . 0 Space-Time Fluctuations of the Condensate Order Parameter ∆( r , t ) = ∆ + D ( r , t ) ◮ Eigenmodes: D ( ± ) = D ± D ∗ (Fermion “Charge” Parity) � 1 � � D ( − ) ) 2 ] − 2∆ 2 ( D (+) ) 2 − 1 D (+) ) 2 + ( ˙ 2[ v 2 ( ∇ D (+) ) 2 + v 2 ( ∇ D ( − ) ) 2 ] d 3 r 2[( ˙ L = t D ( − ) − v 2 ∇ 2 D ( − ) = 0 t D (+) − v 2 ∇ 2 D (+) + 4∆ 2 D (+) = 0 ◮ ∂ 2 ∂ 2 ◮ Anderson-Bogoliubov Mode Amplitude Higgs Mode: M = 2∆

  9. Dynamical Consequences of Spontaneous Symmetry Breaking First Reported Observations of Higgs Bosons in BCS Condensates

  10. Dynamical Consequences of Spontaneous Symmetry Breaking Higgs Mode with mass: M = 3 meV and spin J = 0 in NbSe 2 Raman Absorption in NbSe 2 M. Me´ asson et al. PRB B 89, 060503(R) (2014) R. Sooyakumar & M. Klein, PRL 45, 660 (1980) ◮ � ω γ 1 = � ω γ 2 + 2∆ ◮ Amplitude Higgs - CDW Phonon Coupling ◮ Theory: P. Littlewood & C. Varma, PRL 47, 811 (1981)

  11. Lagrangian Field Theory for Bosonic Excitations of Superfluid 3 He-B 1 3 He-B: B αi = √ 3∆ δ αi L = 1 , S = 1 � J = 0 ◮ Symmetry of 3 He-B: H = SO ( 3 ) J × T � D J,m ( r , t ) t ( J,m ) ◮ Fluctuations: D αi ( r , t ) = A αi ( r , t ) − B αi = αi J,m ◮ Lagrangian: � � � � D † � � DD † � 5 3 � � d 3 r D ˙ ˙ L = τ Tr − α Tr − β p u p ( D ) − K l v l ( ∂ D ) p =1 l =1 J,m = 1 J,m ( q ) 2 D ( C ) t D ( C ) J,m + E ( C ) τ η ( C ) ∂ 2 J,m with J = { 0 , 1 , 2 } , m = − J . . . + J , C = ± 1 ◮ Time-Dependent Ginzburg-Landau Theory for Superfluid 3 He-B : JAS & T. Mizushima, arXiv:1611.07273 (2016)

  12. Spectrum of Bosonic Modes of Superfluid 3 He-B : Condensate is J C = 0 + ◮ 4 Nambu-Goldstone Modes & 14 Higgs modes � � � 2 E ( C ) c ( C ) M 2 J,m ( q ) = J, C + J, | m | | q | Mode Symmetry Mass Name D (+) J = 0 , C = +1 2∆ Amplitude Higgs 0 ,m D ( − ) J = 0 , C = − 1 0 NG Phase Mode 0 ,m D (+) J = 1 , C = +1 0 NG Spin-Orbit Modes 1 ,m D ( − ) J = 1 , C = − 1 2∆ AH Spin-Orbit Modes 1 ,m � 2 + AH Modes D (+) 8 J = 2 , C = +1 5 ∆ 2 ,m � 2 − AH Modes D ( − ) 12 J = 2 , C = − 1 5 ∆ 2 ,m ◮ Vdovin, Maki, W¨ olfle, Serene, Nagai, Volovik, Schopohl, McKenzie, JAS ...

  13. Collective Mode Spectrum for 3 He-B M

  14. Dynamical Consequences of Spontaneous Symmetry Breaking Higgs Mode with mass: M = 500 neV and spin J = 2 at LASSP-Cornell ◮ R. Giannetta et al., PRL 45, 262 (1980)

  15. Dynamical Consequences of Spontaneous Symmetry Breaking Higgs Mode with mass: M = 500 neV and spin J C = 2 + at ULT-Northwestern Group Velocity T/T c ◮ D. Mast et al. Phys. Rev. Lett. 45, 266 (1980).

  16. Dynamical Consequences of Spontaneous Symmetry Breaking Superfluid 3 He Higgs Detector at ULT-Northwestern 3 He- 4 He Dilution + Adiabatic Demagnetization Stages � T min ≈ 200 µ K

  17. J = 2 − , m = ± 1 Higgs Modes Transport Mass and Spin ◮ “Transverse Waves in Superfluid 3 He-B”, G. Moores and JAS, JLTP 91, 13 (1993) �� 1 � � � ω 2 2 F s ρ n ( ω ) + 2 1 C t ( ω ) = 15 v f 5 ρ s ( ω ) ( ω + i Γ) 2 − 12 5 ∆ 2 − 2 5 ( q 2 v 2 f ) � �� � D ( − ) 2 , ± 1 Transverse Zero Sound Propagation in Superfluid 3 He-B: Cavity Oscillations of TZS B − − − − − − − − − − − → ◮ Y. Lee et al. Nature 400 (1999)

  18. Faraday Rotation: Magneto-Acoustic Birefringence of Transverse Currents ◮ “Magneto-Acoustic Rotation of Transverse Waves in 3 He-B”, J. A. Sauls et al., Physica B, 284,267 (2000) 1     2    F s 15 ρ n ( ω ) + 2 F s  ω 2  1 1   C RCP LCP ( ω ) = v f 75 ρ s ( ω )  ( ω + i Γ) 2 − Ω ( − )   2 , ± ( q )   � �� � D ( − ) 2 , ± 1 � Ω ( − ) 12 2 , ± ( q ) = 5 ∆ ± g 2 − γH eff ◮ Circular Birefringence = ⇒ C RCP � = C LCP = ⇒ Faraday Rotation � C RCP − C LCP � � γH eff � ≃ g 2 − C t ω ◮ Faraday Rotation Period ( γH eff ≪ ( ω − Ω ( − ) ) ): 2 4 πC t λ H ≃ g 2 − γH ≃ 500 µm , H = 200 G Discovery of the acoustic Faraday effect in superfluid 3 He-B , Y. Lee, et al. Nature 400, 431 (1999) ◮

  19. Large Faraday Rotations vs. ``Blue Tuning’’ B = 1097 G B = 1097 G 810 o 630 o 270 o 1170 o 990 o (2n + 1) x 90 o (2n + 1) x 90 o C. Collett et al., Phys. Rev. B 87, 024502 (2013)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend