nambu goldstone theorem in nonrelativistic systems qcd in
play

Nambu Goldstone theorem in nonrelativistic systems QCD in a - PowerPoint PPT Presentation

Nambu Goldstone theorem in nonrelativistic systems QCD in a magnetic field Yoshimasa Hidaka (RIKEN) 1 Keyword: Symmetry breaking Spontaneous Explicit Quantum 2 Keyword: Symmetry breaking Spontaneous Nambu-Goldstone theorem Explicit


  1. Nambu Goldstone theorem in nonrelativistic systems QCD in a magnetic field Yoshimasa Hidaka (RIKEN) 1

  2. Keyword: Symmetry breaking Spontaneous Explicit Quantum 2

  3. Keyword: Symmetry breaking Spontaneous Nambu-Goldstone theorem Explicit Magnetic field Quantum Chiral anomaly 2

  4. Nambu Goldstone theorem in nonrelativistic systems Yoshimasa Hidaka (RIKEN) 3

  5. Zero modes in nature 4

  6. Zero modes in nature Light (Photon) 4

  7. Zero modes in nature Light (Photon) 4

  8. Zero modes in nature Light (Photon) Crystal Vibrations (Phonon) 4

  9. Zero modes in nature Light (Photon) Crystal Vibrations (Phonon) Edge modes in topological insulator Topological Insulator Electron(up spin) Electron(down spin) 4

  10. Zero modes in nature Light (Photon) Gauge symmetry Crystal Vibrations (Phonon) Spontaneous symmetry breaking of translation Edge modes in topological insulator Topological Insulator Electron(up spin) Electron(down spin) Topological 4

  11. Spontaneous Symmetry breaking V ( φ ) V ( φ ) φ φ Unbroken Broken 5

  12. Nambu-Goldstone bosons Examples in hadron physics Pions and Kaons Chiral symmetry breaking Type-I NG modes p k 2 + m 2 E = NG mode in Kaon condensed color flavor locking phase Schafer, Son, Stephanov, Toublan, and Verbaarschot (’01) Miransky, Shovkovy (’02) E = a k 2 Type-II NG modes 6

  13. Nambu-Goldstone bosons Other Examples Phonon in crystal ( Galilean, rotational, translational symmetries ) Phonon in superfluid (U(1) symmetry) Acoustic phonon? (Galilean symmetry) Magnon (Rotational symmetry) 7

  14. Nambu-Goldstone theorem in Lorentz invariant systems Nambu(’60), Goldstone(61), Nambu Jona-Lasinio(’61), Goldstone, Salam, Weinberg(’62). N NG = N BS N BS : the number of broken symmetries N NG : the number of NG modes Dispersion relation E k = | k | 8

  15. Generalization Nielsen and Chadha (’76) N type-I + 2 N type-II ≥ N BS 9

  16. Generalization Nielsen and Chadha (’76) N type-I + 2 N type-II ≥ N BS Schafer, Son, Stephanov, Toublan, and Verbaarschot (’01) N NG = N BS h [ Q a , Q b ] i = 0 9

  17. Generalization Nielsen and Chadha (’76) N type-I + 2 N type-II ≥ N BS Schafer, Son, Stephanov, Toublan, and Verbaarschot (’01) N NG = N BS h [ Q a , Q b ] i = 0 Watanabe and Brauner (’11) N BS � N NG � 1 2rank � [ Q a , Q b ] � 9

  18. Example of type-II 1 1 2rank h [ Q a , Q b ] i N BS − N NG N BS N type-I N type-II N BS N type-I N tyep-II 2rank h [ Q a , Q b ] i N type-I + 2 N type-II Magnon 2 0 1 1 2 in Ferromagnet O(3) → O(2) NG mode in Kaon condensed color 3 1 1 1 3 flavor locked phase SU(2)xSU(1) Y → SU(2) em Kelvon in Vortex of 2 0 1 1 2 superfluid Translation P x , P y breaking Known examples satisfy the equalities N type-I + 2 N type-II = N BS N BS � N NG = 1 2rank h [ Q a , Q b ] i 10

  19. The recent results Watanabe, Murayama (’12), YH (’12) N BS � N NG = 1 2rank h [ Q a , Q b ] i N type-I + 2 N type-II = N BS N type-II = 1 2rank h [ Q a , Q b ] i 11

  20. Spontaneous symmetry breaking (SSB) Γ [ φ ] h [ φ i , Q a ] i = tr ρ [ φ i , Q a ] 6 = 0 tr ρ NG fields Conserved charges a = 1 , · · · , N BS ρ = | Ω ih Ω | Vacuum: φ Matter: ρ = exp( − β ( H − µN )) zero mode 12

  21. Suppose the classical action is invariant under The effective action satisfies � i → � i + ✏ a [ Q a , � i ] Γ [ φ ] d d x δΓ [ φ ] Z δφ i ( x ) h [ Q a , φ i ( x )] i = 0 13

  22. Suppose the classical action is invariant under The effective action satisfies � i → � i + ✏ a [ Q a , � i ] Γ [ φ ] d d x δΓ [ φ ] Z δφ i ( x ) h [ Q a , φ i ( x )] i = 0 δ 2 Γ [ φ ] Z d d x δφ j ( y ) δφ i ( x ) h [ Q a , φ i ( x )] i = 0 13

  23. Suppose the classical action is invariant under The effective action satisfies � i → � i + ✏ a [ Q a , � i ] Γ [ φ ] d d x δΓ [ φ ] Z δφ i ( x ) h [ Q a , φ i ( x )] i = 0 δ 2 Γ [ φ ] Z d d x δφ j ( y ) δφ i ( x ) h [ Q a , φ i ( x )] i = 0 δ 2 Γ [ φ ] Inverse of propagators D − 1 ji ( y, x ) = φ j ( y ) δφ i ( x ) have zero eigenvalues. 13

  24. Suppose the classical action is invariant under The effective action satisfies � i → � i + ✏ a [ Q a , � i ] Γ [ φ ] d d x δΓ [ φ ] Z δφ i ( x ) h [ Q a , φ i ( x )] i = 0 δ 2 Γ [ φ ] Z d d x δφ j ( y ) δφ i ( x ) h [ Q a , φ i ( x )] i = 0 δ 2 Γ [ φ ] Inverse of propagators D − 1 ji ( y, x ) = φ j ( y ) δφ i ( x ) have zero eigenvalues. The number coincides with the number of independent eigenvectors h [ Q a , φ i ( x )] i 13

  25. For the Lorentz invariant system Goldstone, Salam, Weinberg (’62) h [ Q a , φ i ( x )] i ⌘ M ( a ) independent of x i ji ( p 2 = 0) M ( a ) D − 1 = 0 i N NG = the number of independent eigenvectors = N BS 14

  26. In general, N BS ≠ the number of eigenvectors Low, and Manohar (’02) h [ Q a , φ i ( x )] i should be eigenvector of unbroken translation h [ Q a , φ i ( x )] i is not always the eigenvector. 15

  27. In general, N BS ≠ the number of eigenvectors Low, and Manohar (’02) h [ Q a , φ i ( x )] i should be eigenvector of unbroken translation h [ Q a , φ i ( x )] i is not always the eigenvector. Example: Domain wall Broken symmetry: Translation ( P x ) h [ P x , φ ] i = ∂ x h φ i 6 = 0 h [ L z , φ ] i = � y ∂ x h φ i 6 = 0 Rotation ( L y , L z ) h [ L y , φ ] i = z ∂ x h φ i 6 = 0 h [ L y,z , φ ] i are not eigenvectors of P y , P z One NG mode exists associated with P x . 15

  28. The number of independent eigenvectors is not always equal to the number of NG modes Example: Ferromagnet Spin rotation O(3) → O(2) Broken generator: S x , S y Two eigenvector: ✏ ijz h s z i One spin wave appears. 16

  29. Intuitive example for type-II NG modes Pendulum with a spinning top Rotation symmetry is explicitly broken by a weak gravity Rotation along with z axis is unbroken. Rotation along with x or y is broken. The number of broken symmetry is two. 17

  30. Intuitive example Pendulum has two oscillation motions if the top is not spinning. for type-II NG modes 18

  31. Intuitive example If the top is spinning, the only one rotation motion (Precession) exists. In this case, for type-II NG modes { L x , L y } P = L z 6 = 0 19

  32. NG theorem in Hamiltonian formalism 20

  33. A simple Hamiltonian system { x, p } P = 1 H = a ( k ) 2 p 2 + b ( k ) 2 x 2 21

  34. A simple Hamiltonian system { x, p } P = 1 H = a ( k ) 2 p 2 + b ( k ) 2 x 2 ∂ t x = { x, H } P = a ( k ) p ∂ t p = { p, H } P = − b ( k ) x 21

  35. A simple Hamiltonian system { x, p } P = 1 H = a ( k ) 2 p 2 + b ( k ) 2 x 2 ∂ t x = { x, H } P = a ( k ) p ∂ t p = { p, H } P = − b ( k ) x ∂ 2 t x + a ( k ) b ( k ) x = 0 21

  36. ∂ 2 t x + a ( k ) b ( k ) x = 0 22

  37. ∂ 2 t x + a ( k ) b ( k ) x = 0 a ( k ) = a 0 + a 2 k 2 b ( k ) = b 0 + b 2 k 2 a ( k ) b ( k ) = a 0 b 0 + ( a 0 b 2 + a 2 b 0 ) k 2 + a 2 b 2 k 4 22

  38. Energy gapped zero zero gapless (type-II) nonzero zero gapless (type-I) nonzero nonzero ∂ 2 t x + a ( k ) b ( k ) x = 0 a ( k ) = a 0 + a 2 k 2 b ( k ) = b 0 + b 2 k 2 a ( k ) b ( k ) = a 0 b 0 + ( a 0 b 2 + a 2 b 0 ) k 2 + a 2 b 2 k 4 b 0 a 0 p a 0 b 0 ∼ | k | ∼ k 2 cf. Nambu (’04) 22

  39. { x i , p j } P = δ ij ( i, j = 1 , · · · , N BS ) H = 1 2 p t H pp p + 1 2 x t H xx x 23

  40. { x i , p j } P = δ ij ( i, j = 1 , · · · , N BS ) H = 1 2 p t H pp p + 1 2 x t H xx x m 2 = H pp H xx Mass matrix: N massive = rank( m 2 ) The number of NG modes: N NG = N BS − N massive 23

  41. ✓ x ◆ ✓ x ◆ ∂ t = M H p p ✓ 0 ✓ H xx ◆ ◆ 0 1 where M = H = H pp 0 − 1 0 24

  42. ✓ x ◆ ✓ x ◆ ∂ t = M H p p ✓ 0 ✓ H xx ◆ ◆ 0 1 where H = M = H pp 0 − 1 0 half of the number of nonzero N massive = eigenvalues of M H The number of NG modes N NG = N BS − N massive 24

  43. ✓ x ◆ ✓ x ◆ ∂ t = M H p p ✓ M xx ✓ ◆ H xx H xp ◆ M xp where H = M = ( H xp ) t H pp − M t M pp xp half of the number of nonzero N massive = eigenvalues of M H The number of NG modes N NG = N BS − N massive 25

  44. What are canonical variables? What is the Poisson bracket? What is the Hamiltonian? 26

  45. Projection operator method Mori (’65) Operator set { A n } A m (0) A n (0) 27

  46. Projection operator method Mori (’65) Operator set { A n } A m (0) QA n ( t ) A n ( t ) P A n ( t ) A n (0) 27

  47. Projection operator method Mori (’65) ∂ t A n ( t, k ) = i [ H, A n ( t, k )] 28

  48. Projection operator method Mori (’65) ∂ t A n ( t, k ) = i [ H, A n ( t, k )] Generalized Langevin equation ∂ t A n ( t, k ) = M nm ( k ) Γ ml ( k ) A m ( t, k ) streaming � ∞ dsK nm ( t − s, k ) Γ ml ( k ) A l ( s, k ) − 0 dissipation + R n ( t, k ) noise 28

  49. Expectation value: Inner product: Projection operator method Mori (’65) h O i ⌘ tr e − β H O tr e − β H Z β ( O 1 , O 2 ) ⌘ 1 d τ h e τ H O 1 e − τ H O † 2 i β 0 g nm ( x − y ) ≡ ( A n (0 , x ) , A m (0 , y )) Z d 3 yg nm ( x − y ) g ml ( y − z ) = δ l n δ (3) ( x − y ) . δ 2 βΓ ( A n ) g ml ( x − y ) = ≡ Γ ml ( x − y ) , δ A l ( y ) δ A † m ( x ) � d 3 yg nm ( x − y ) A m ( t, y ) A n ( t, x ) ≡ 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend