symmetries and dynamics in particle physics the legacy of
play

Symmetries and dynamics in Particle Physics: the legacy of Yoichiro - PowerPoint PPT Presentation

N a m b u S y m p o s i u m O s a k a C i t y U n i v . 1 3 / 1 2 / 2 0 1 8 Symmetries and dynamics in Particle Physics: the legacy of Yoichiro Nambu K . K o n i s h i ( U n i v . P i s a / I N F N , P i s a ) Achievements by Y. Nambu


  1. N a m b u S y m p o s i u m O s a k a C i t y U n i v . 1 3 / 1 2 / 2 0 1 8 Symmetries and dynamics in Particle Physics: the legacy of Yoichiro Nambu K . K o n i s h i ( U n i v . P i s a / I N F N , P i s a )

  2. Achievements by Y. Nambu Spontaneous symmetry breakdown 🔶 Chiral symmetry breaking and physics of massless pions /current algebra Color degrees of freedom 🔶 wA\ Quark model to Quantum Chromodynamics Strings from dual resonance model 🔶 Nambu-Goto action: birth of string theory Color (quark) confinement 🔶

  3. Work and recollections by colleagues “Yoichiro Nambu: remembering an unusual physicist, a mentor, and a friend" 🔶 Giovanni Jona-Lasinio, Prog. Theor. Exp. Phys. 2016 , 07B102 “BCS, Nambu-Jona-Lasinio, and Han-Nambu - A sketch of Nambu’s works 🔶 in 1960-1965 ” Kazuo Fujikawa, arXiv:1602.08193 “Nambu at Work" 🔶 Peter G. Freund, arXiv:1511.06955 “Professor Nambu, String Theory and Moonshine Phenomenon" 🔶 Tohru Eguchi, arXiv:1608.06036 “Yoichiro Nambu" 🔶 Holger B Nielsen, Int. J. Mod. Pays. A (2016) “Birth of String Theory" 🔶 Hiroshi Itoyama arXiv:1604.03701

  4. “Chiral symmetries and current algebra” Erice Summer School, 1972 Ettore Majorana Nambu’s lecture at the “Highlights in Particle Physics” Spontaneous symmetry breaking: non gauge theories 🔶 Nambu-Goldstone modes (pions), PCAC, soft-pion theorems Spontaneous symmetry breaking: gauge theories 🔶 wA\ Need of anomaly Englert-Brout-Higgs mechanism; Weinberg-Salam electroweak theory cancellation Bilinear quark algebra 🔶 A remark: 🔶 “ … I am convinced that the strong interactions are also 2 7 described by some sort of color gauge theory. ” 9 1 r e m m u S

  5. In retrospect … J.C. Taylor Nambu was fully aware that the analogy with 🔶 superconductivity (with pion physics) was not perfect; Nambu played with the idea of giving mass (by the Higgs mechanism) 🔶 ρ ± ∗ , K ∗ . Freund to massive vectors, as P cfr. Weinberg-Salam Nambu was convinced that the strong interactions were described 🔶 by a gauge theory of color cfr. QCD of Fritzch-Gell-Mann-Leutwyler 3 more Nobel prizes within reach …

  6. ① ② ③ ④ ⑤ Symmetries and dynamics : Nambu’s legacy Color and QCD: confinement and XSB Magnetic monopole condensation: Puzzles and solutions Exact solutions in N=2 supersymmetric gauge theories NonAbelian vortices and monopoles topological solitons vs gauge dynamics Generalized symmetries, mixed ’t Hooft anomalies QCD; Chiral gauge theories

  7. ① Let’s start where Nambu has left out… Spontaneous chiral symmetry breaking XSB: (&) Y. Nambu and G. Jona-Lasinio, Phys. Rev. 1961 “The basic principle underlying the model is the idea that field theory may admit, as a result of dynamical instability, extraordinary (nontrivial) solutions that have less symmetries than are built into the Lagrangian. “ Massless Nambu-Goldstone bosons (pions) of broken SU A ( N f ) Color confinement ? (vs XSB) (&) Want a deeper understanding of

  8. ② Confinement = a dual superconductor ? Nambu, Mandelstam, ’t Hooft, ~‘80 SU (3) → U (1) 2 → 1 ’t Hooft-Polyakov monopoles (M) ! • Dual Abelian gauge theory h M i 6 = 0 Monopole condensation • q ¯ q (cfr. Cooper pair condensation) • Dual Meissner effect (color chromoelectric fields expelled) • Chromoelectric vortex Linearly rising q - q* potential !

  9. D ¯ ψ � L Puzzles s × k ) = N f ) ( 2 ) • U 1 A No evidence from lattice GT S ( U ‘80~’18 ( π 1 = Confinement vs XSB ) 2 ) 1 ( U • / Doubling of the meson spectrum ) (*) 3 ( U S ( π 2 • XSB If Accidental SU(N F2 ) : too many NG bosons (**) Monopoles weak coupled • No dynamical mechanism for h M i 6 = 0 (***) Solution: • Non-Abelian monopole condensation Z = ) ) 1 ( U SU (3) → SU (2) × U (1) → 1 × ) 2 ( U S ( Π 1 (*), (**), (***) OK? no-go theorem ? Price: Non-Abelian monopoles strongly coupled ?

  10. NonAbelian magnetic monopoles, gauge dynamics and confinement: theoretical developments ’94 - ‘18 P isa, Titech, Seiberg-Witten • Exact solutions of N=2 Minnesota, • NonAbelian vortex Cambridge, Keio supersymmetric gauge theories • NonAbelian monopoles • Exact quantum mech. monopoles • V ortices in A r g y G r e a s i , o S High density QCD / cold atoms t … e t o i b • N=2 SCFT’s and dualities , e T … r a g c , h i k a w • CP N-1 in finite width strip a • RG and IRFP and confinement

  11. ③ Seiberg-Witten solutions in N=2 supersymmetric theories ’94 - SW curves: all pert/nonpertive effects encoded 🔶 Exact low-energy dual Abelian or nonAbelian L eff 🔶 n a i l e b A n o n d n a n a i l e b Analytic demonstration of confinement A ; r K e O n 🔶 s s t i n e e M m l e a n u fi d n o D c C f o Q e r o u t t c r i a p l i m Confinement vs XSB i s T O 🔶 N t u B Argyres-Douglas vacua 🔶 ’ 06 ’09 Argyres-Seiberg S duality, Gaiotto and SCFT : t 🔶 l u c fi f i d t u b g n i t s e ? r D e t C n i Q t s o Confining vacuum near strongly coupled SCFT o t M y 🔶 g o l a n a e m o s

  12. Confinement and RG flow red curves= deformations by some relevant operators

  13. RG flows Bolognesi, Giacomelli, KK ‘16 Real-world QCD N =2 SCFT N =0 SCFT SU(N), N F =2N-1 a UV = 7 N 2 − N − 5 a UV = 11 N f N c + 31 180( N 2 c − 1) 360 � 24 20 N f N c + N 2 c UV = 4 N 2 − N − 2 c UV = 1 c � 1 ; 10 12 N f < 11 2 N c a N =2 SCF T = 7 N ( N − 1) 24 c N =2 SCF T = N ( N − 1) 3 − a IR = (2 N − 1) 2 − 1 a IR = N 2 f − 1 48 . in adjoint repr of G F 360 c IR = (2 N − 1) 2 − 1 c IR = N 2 f � 1 ; 24 120

  14. ③ Summary of deep insights into quantum behaviors of monopoles ♦ in the infrared and their role in confinement/XSB ♦ not quite a good model for QCD, ♦ except for the confinement vacua “near” strongly coupled CFT Abelian and nonAbelian monopoles = topological solitons ? ♦

  15. ④ Auzzi et. al, Hanany-Tong ’03- Shifman-Yung, Nitta-Ohashi-Sakai … NonAbelian vortices and monopoles NonAbelian vortex = 🔶 ANO vortex embedded in CF locked vacuum Internal orientational zeromodes ~ 🔶 Fluctuations: CP N-1 sigma model in 2D vortex world sheet Non-Abelian monopoles are the endpoints of the 🔶 nonAbelian vortices non-Abelian monopoles Notorious problems avoided 🔶 Bolognesi, Gudnason, Ohashi, KK ’16-‘18 Quantum physics of CP N-1 sigma model on finite-width 🔶 vortex world sheet ; Unbroken isometry SU(N) cfr. Gorsky, Pikalov, Standard CP N-1 model at L Vainshtein’ nov 18

  16. N onAbelian monopoles and duality v 1 v 2 SU ( N + 1) color ⊗ SU ( N ) flavor → ( SU ( N ) × U (1)) color ⊗ SU ( N ) flavor → SU ( N ) C + F − − 3 0 ’ g n u Y , 3 , 0 K ’ K , g n n , o l i T s v h , E a n i , s n e a n H g o l 4 o 0 B ’ , 3 . , z i 0 K z ’ . u , K A g n n , u l i Y s v n , E a m i , s e i f h n g S o Monopole Vortex l o B , z i z u A Vortices with fluctuating orientational CP N-1 modes • The monopole ~ N of a new (dual) SU(N) --- isometry group of CP N-1 = Origin of the dual SU(N) gauge group 1 1 0 2 i , n l i e h c M i K . K . n , o s a n d u G i , n o g r i o D , n i a 4 r i 1 p 0 i 2 C K . . K , e e r j e t a t h C

  17. Summary of ③ , ④ Quantum behavior of Abelian and nonAbelian monopoles 🔶 in the IR fairly well (in N=2, N=1, susy gauge theories) understood; The topological soliton monopoles and vortices 🔶 (many applications): origin of the nonAbelian monopoles Understanding of confinement /chiral symmetry breaking 🔶 in the real-world (non supersymmetric) strong-interaction theory however remains a holy grail Some new ideas ? 🔶

  18. ⑤ Generalized symmetries, line and surface operators; , o t t o i a G y , n o ’05-‘18 Mixed ’t Hooft anomalies; r . a . , h i k A s d , n o i g t s r u a p m a o K K , g , r t e e l b l i i W e S Symmetry protected topological order (SPT) , , a i a w k a a k S i h i , c k a a T z i n a T , i h c u k i K , z a , t r i p u p k o e n P o Y , u z m i i 3 h 8 S ’ e n a d l a H 9 8 ‘ , n From 0-form symmetries (acting on local operators) e W 🔶 to k-form symmetries (acting on line, surface, etc operators) e.g. the center symmetry in SU(N) YM (k=1) ♦ p o o p l o n o o l Criteria for different phases s v l i o W k a y l o P H γ A → Ω N e i H e i γ A , Ω N = e 2 π i/N ∈ N Phases / symmetry realization of the system not described by the vacuum expectation values Nambu-Jona Lasinio of a local operator g r u b z n G i - u a d n a L h ¯ h φ ( x ) i , ψ ( x ) ψ ( x ) i : a germ for change of PARADIGM (growing out of Nambu’s teaching…)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend