axion as a dark matter
play

Axion as a Dark matter 20195513 Minsang Yu 1 Contents 1. - PowerPoint PPT Presentation

Axion as a Dark matter 20195513 Minsang Yu 1 Contents 1. Spontaneous Symmetry Breaking (SSB) U 1 A problem 2. 3. Strong CP problem 4. Axion Search 5. Summary 2 1. Spontaneous Symmetry Breaking (SSB) Consider a simple Lagrangian for


  1. Axion as a Dark matter 20195513 Minsang Yu 1

  2. Contents 1. Spontaneous Symmetry Breaking (SSB) U 1 A problem 2. 3. Strong CP problem 4. Axion Search 5. Summary 2

  3. 1. Spontaneous Symmetry Breaking (SSB) โ€ข Consider a simple Lagrangian for a (real) scalar field: โ„’ = 1 2 ๐œ– ๐œˆ ๐œš๐œ– ๐œˆ ๐œš โˆ’ ๐‘Š ๐œš โ€ข For a โ€symmetricโ€ potential: โ€œ Symmetric โ€ potential means: ๐‘Š โˆ’๐œš = ๐‘Š ๐œš 2 ๐œˆ 2 ๐œš 2 + ๐œ‡ 4 ๐‘Š ๐œš = โˆ’ 1 4 ๐œš 4 โ€ข Our goal: Take a look at the ground states! 3

  4. 1. Spontaneous Symmetry Breaking (SSB) โ€ข Here, It is known that : โ€œ constant configuration of scalar field such that minimizes the potential term also minimizes the kinetic term at the same time. โ€ ๐œ–๐‘Š ๐œ–๐ฟ ๐œš = ๐‘‘๐‘๐‘œ๐‘ก๐‘ข๐‘๐‘œ๐‘ข , ๐œ–๐œš = 0 ๐œ–๐œš = 0 4

  5. 1. Spontaneous Symmetry Breaking (SSB) โ€ข For simplicity, let โ€™ s consider only two potentials: ๐‘Š ๐œš = โˆ’ ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 ๐‘Š ๐œš = + ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 4 ๐œš 4 4 ๐œš 4 5

  6. 1. Spontaneous Symmetry Breaking (SSB) ๐œ–๐‘Š โ€ข constant field solutions for ๐œ–๐œš = 0 ๐‘Š ๐œš = โˆ’ ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 4 ๐œš 4 1. ฯ• = 0 โ€ข Question: Does the solution enjoys the same symmetry as the potential? Yes! 1. ฯ• = 0 = (โˆ’0) ๐œš = 0 6

  7. 1. Spontaneous Symmetry Breaking (SSB) ๐œ–๐‘Š โ€ข constant field solutions for ๐œ–๐œš = 0 ๐‘Š ๐œš = + ๐Ÿ ๐Ÿ‘ ๐œš 2 + 1 4 ๐œš 4 1. ฯ• = 0 2. ฯ• = +1 3. ฯ• = โˆ’1 โ€ข Question: Does the solution enjoys the same symmetry as the potential? ๐œš = 0 Yes! 1. ฯ• = 0 = (โˆ’0) No โ€ฆ 2. ฯ• = +1 โ‰  โˆ’(+1) ๐œš = 1 ๐œš = โˆ’1 No โ€ฆ 3. ฯ• = โˆ’1 โ‰  โˆ’(โˆ’1) Two solutions do not follow the symmetry of the potential 7

  8. 1. Spontaneous Symmetry Breaking (SSB) โ€ข For more intuition, letโ€™s consider some perturbations: ๐œš ๐‘ฆ = ๐œš 0 + ๐œ€๐œš(๐‘ฆ) derivative of constant is zero. โ„’ ๐œš = 1 ๐œ– ๐œˆ ๐œš 0 + ๐œ€๐œš ๐‘ฆ 2 ๐œ– ๐œˆ ๐œš 0 + ๐œ€๐œš ๐‘ฆ โˆ’ V ๐œš 0 + ๐œ€๐œš ๐‘ฆ โ†’ โ„’ ๐œš = 1 2 ๐œ– ๐œˆ ๐œ€๐œš๐œ– ๐œˆ ๐œ€๐œš + 1 2 โˆ’ 1 4 2 ๐œš 0 + ๐œ€๐œš ๐‘ฆ 4 ๐œš 0 + ๐œ€๐œš ๐‘ฆ 8

  9. 1. Spontaneous Symmetry Breaking (SSB) โ€ข For more intuition, let โ€™ s consider some perturbations: ๐œš ๐‘ฆ = ๐œš 0 + ๐œ€๐œš(๐‘ฆ) 2 โˆ’ 1 4 1 1 For ๐œš = 0 ๐œ€๐œš โ†’ โˆ’๐œ€๐œš 2 ๐œ– ๐œˆ ๐œ€๐œš๐œ– ๐œˆ ๐œ€๐œš + โ†’ โ„’ 0 = 2 ๐œ€๐œš ๐‘ฆ 4 ๐œ€๐œš ๐‘ฆ 2 โˆ’ 1 4 For ๐œš = ยฑ1 โ†’ โ„’ ยฑ1 = 1 1 ๐œ€๐œš โ†’ โˆ’๐œ€๐œš 2 ๐œ– ๐œˆ ๐œ€๐œš๐œ– ๐œˆ ๐œ€๐œš + 2 ยฑ1 + ๐œ€๐œš ๐‘ฆ 4 ยฑ1 + ๐œ€๐œš ๐‘ฆ โ€ข What governs the underlying physics is potential, and it has a symmetry. โ€ข What we see in our experience is small perturbations, and the symmetry is โ€œ broken โ€ . (or, โ€œ hidden โ€ . There IS always a symmetry, but we just don โ€™ t see it explicitly. ) 9

  10. 1. Spontaneous Symmetry Breaking (SSB) OK. We got SSB with a real scalar field. How about a complex scalar field? 10

  11. 1. Spontaneous Symmetry Breaking (SSB) Real scalar field Complex scalar field โ„’ = 1 โ„’ = 1 2 ๐œ– ๐œˆ ๐œš โˆ— ๐œ– ๐œˆ ๐œš โˆ’ ๐‘Š ๐œš 2 ๐œ– ๐œˆ ๐œš๐œ– ๐œˆ ๐œš โˆ’ ๐‘Š ๐œš 2 ๐œˆ 2 ๐œš 2 + ๐œ‡ 4 2 ๐œˆ 2 ๐œš 2 + ๐œ‡ 4 ๐‘Š ๐œš = โˆ’ 1 ๐‘Š ๐œš = โˆ’ 1 4 ๐œš 4 4 ๐œš 4 ๐œš โ†’ ๐œš๐‘“ ๐‘—๐œ„ ๐œš โ†’ โˆ’๐œš 11

  12. 1. Spontaneous Symmetry Breaking (SSB) 4 ๐œš 4 ( ๐œˆ 2 < 0 ) ๐œ‡ 4 1 2 ๐œˆ 2 ๐œš 2 + ๐‘Š ๐œš = โˆ’ Symmetric solution: Re ๐œš = 0, Im ๐œš = 0 Non-Symmetric solution: Re ๐œš = ๐œˆ ๐œ‡ , Im ๐œš = 0 Re ๐œš Q: If you also consider some perturbations here: Im ๐œš A1: sym. solution falls to non-sym. solution. A2: non-sym. solution climbs the valley, or spins around. A degree of freedom is equivalent to a new particle. Itโ€™s called a Goldstone boson . 12

  13. าง 1. Spontaneous Symmetry Breaking (SSB) โ€ข In strong interaction, เดค ๐‘’๐‘’ โ‰  0 , breaking the axial symmetry U 1 ๐ต . ๐‘ฃ๐‘ฃ , โ€ข Therefore, there should be a Goldstone boson related to the SSB. โ€ข There were two possibilities: 1. pion โ€œ eats โ€ the goldstone boson and gets a polarization. 2. or, another particle lighter than pion should exist. โ€ข โ€ฆ and none of them was observed. This is so called โ€˜ ๐• ๐Ÿ ๐‘ฉ problem โ€™ . 13

  14. 2. U 1 A problem โ€ข OK. Something is wrong. But where did we miss? โ€œ Maybe we used wrong boundary conditions on QCD vacuum. โ€ Gerard โ€˜t Hooft 14

  15. 2. U 1 A problem classical Quantum level โ€ข Baryonic current: ๐‘• 2 ๐‘๐œˆ๐œ‰ = ๐œ– ๐œˆ ๐ฟ ๐œˆ (from Ward-Takahashi identity) ๐œˆ = ๐œˆ = 0 ๐œˆ๐œ‰ ๐บ ๐œ– ๐œˆ ๐พ ๐ถ 32๐œŒ 2 ๐บ ๐œ– ๐œˆ ๐พ ๐ถ ๐‘ (Follows least action principle in average, but there are some offsets.) ๐‘• 2 โ€ข Quantum corrections on action: 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ ๐œ€๐‘‹ = ๐œˆ = 0 โ€ข Naรฏve boundary condition: ๐ต ๐‘ เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ = 0 ๐œ€๐‘‹ = 0 (at spatial infinity) โ€ข โ€˜ t Hooft boundary condition: 0 ๐œˆ = แ‰Š เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ โ‰  0 ๐ต ๐‘ ๐‘•๐‘๐‘ฃ๐‘•๐‘“ ๐‘ข๐‘ ๐‘๐‘œ๐‘ก๐‘”๐‘๐‘ ๐‘› ๐‘๐‘” 0 ๐œ€๐‘‹ โ‰  0 (at spatial infinity) 15

  16. 2. U 1 A problem โ€ข Actually, using โ€˜t Hooft B.C. : เถฑ ๐‘’ 4 ๐‘ฆ๐œ– ๐œˆ ๐ฟ ๐œˆ โˆ ๐‘‚ ๐‘—๐‘œ๐‘ข๐‘“๐‘•๐‘“๐‘  โ€ข It means that there are n-vacua with the same energy (=degenerated): (๐‘œ = 0) โ‡’ corresponding set ๐ต ๐œˆ 0 n-vacua (๐‘œ = 1) โ‡’ corresponding set ๐ต ๐œˆ 1 {|๐‘‚ = ๐‘œโŸฉ} โ€ฆ โ€ข Vacuum transition โ€ข Classical: no transition btw different vacuum: ๐‘œ ๐‘› = 0 โ€ข Quantum: transition is OK: ๐‘œ ๐‘› โ‰  0 16

  17. 2. U 1 A problem โ€ข Well, to bypass the โ€œtransition - ableโ€ vacuum, How aboutโ€ฆ ๐œ„ ๐œ„ โ€ฒ = 0. ๐‘“ โˆ’๐‘—๐‘œ๐œ„ |๐‘œโŸฉ ๐œ„ = เท ๐œ„: ๐‘”๐‘ ๐‘“๐‘“ ๐‘ž๐‘๐‘ ๐‘๐‘›๐‘“๐‘ข๐‘“๐‘  ๐‘ขโ„Ž๐‘“๐‘œ ๐‘œ โ€ข OK. Now letโ€™s see what happens to action ๐‘‡ in order to make ๐œ„ as the eigenstate of the โ„’ : ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐บ ๐‘๐œˆ๐œ‰ ๐‘ 17

  18. 2. U 1 A problem โ€ข One last thing: โ€ข If we assume quark mass as real, we should get some proper coordinate. โ€ข Such coordinate can be obtained through chiral transformation: าง ๐œ„ = ๐œ„ + arg det ๐‘ ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + าง ๐บ ๐‘๐œˆ๐œ‰ ๐‘ a CP-violating term 18

  19. 2. U 1 A problem ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + าง ๐บ ๐‘๐œˆ๐œ‰ ๐‘ a CP-violating term โ€œ OK. Now we know why U 1 A problem happens. โ€ โ€œ It โ€™ s because of the CP violating term. Problem solved! โ€ โ€œ Now let โ€™ s go get าง ๐œ„ ! โ€ (As าง ๐œ„ is a free parameter, it lies somewhere on 0, 2๐œŒ .) 19

  20. 2. U 1 A problem ๐œ„ ~10 โˆ’10 (extremely small) ๐‘’ ๐‘œ ~5 โˆ™ 10 โˆ’16 เดฅ เดฅ ๐œ„ ๐‘“ โˆ™ ๐‘‘๐‘› โ‡’ 20

  21. 2. U 1 A problem โ€ข ๐œ„ is a free parameter in 0, 2๐œŒ . โ€ข So it โ€™ s totally OK for าง ๐œ„ being any value. ANY value. โ€ข But why ZERO?? โ€ข โ€ฆ this is the famous strong CP problem : โ€œ Why there โ€™ s no sign of strong interaction violating CP? โ€ 21

  22. าง 3. Strong CP problem โ€ข Letโ€™s do reverse engineering for าง ๐œ„ being zero: ๐œ„ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + าง ๐บ ๐‘๐œˆ๐œ‰ ๐‘ ๐œ„ = ๐œ„ + arg det ๐‘ chiral transformation (for real quark mass) ๐œ„ 22

  23. าง าง 3. Strong CP problem โ€ข Let โ€™ s do reverse engineering for าง ๐œ„ being zero: โ€œ Maybe there is something that cancels เดฅ ๐œพ at the ground state. โ€ ๐‘• 2 ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐œ„ + ๐‘ก๐‘๐‘›๐‘“๐‘ขโ„Ž๐‘—๐‘œ๐‘• ๐บ ๐‘๐œˆ๐œ‰ ๐‘ ๐œ„ + ๐‘ก๐‘๐‘›๐‘“๐‘ขโ„Ž๐‘—๐‘œ๐‘• = ๐œ„ + arg det ๐‘ + ๐‘ก๐‘๐‘›๐‘“๐‘ขโ„Ž๐‘—๐‘œ๐‘• chiral transformation (for real quark mass) ๐œ„ 23

  24. าง าง 3. Strong CP problem โ€ข Let โ€™ s do reverse engineering for าง ๐œ„ being zero: โ€œ Maybe there is something that cancels เดฅ ๐œพ at the ground state. โ€ ๐‘• 2 ๐œ„ + ๐‘ ๐‘ฆ ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐บ ๐‘๐œˆ๐œ‰ ๐‘ ๐‘” ๐‘ ๐œ„ + ๐‘ ๐‘ฆ = ๐œ„ + arg det ๐‘ + ๐‘ ๐‘ฆ ๐‘” ๐‘” ๐‘ ๐‘ chiral transformation (for real quark mass) Peccei and Quinn: โ€œ something is the axion field a(x) โ€ ๐œ„ U 1 PQ : ๐‘ ๐‘ฆ โŸถ ๐‘ ๐‘ฆ + ๐›ฝ๐‘” ๐‘ 24

  25. าง าง 3. Strong CP problem โ€ข What happens when U 1 PQ is imposed? 1. A particle corresponding to U 1 PQ is assumed: ๐‘… = ๐œ๐‘“ ๐‘—๐‘ ๐‘ฆ /๐‘” ๐‘ ๐‘• 2 ๐œ„ + ๐‘ ๐‘ฆ 2. Such particle โ€™ s mass has a form: ๐œˆ๐œ‰ เดค 32๐œŒ 2 เถฑ ๐‘’ 4 ๐‘ฆ๐บ ๐‘‡ ๐‘“๐‘”๐‘” = ๐‘‡ ๐‘…๐ท๐ธ + ๐บ ๐‘ ๐‘๐œˆ๐œ‰ ๐‘› ๐‘ ~๐‘“ ๐‘—๐‘ ๐‘ฆ /๐‘” ๐‘” ๐‘ ๐‘ ๐œ„ + ๐‘ ๐‘ฆ = ๐œ„ + arg det ๐‘ + ๐‘ ๐‘ฆ 3. Such particle also experiences chiral transformation ๐‘” ๐‘” (or, the mass term is now added to M) ๐‘ ๐‘ chiral transformation (for real quark mass) ๐œ„ 25

  26. 3. Strong CP problem โ€ข Now, let โ€™ s do what we did on SSB section: ๐œ–๐‘Š ๐‘“๐‘”๐‘” โ€ข Question: โ€œ find ๐‘ that = 0 โ€ ๐œ–๐‘ โ€ข Answer: โ€œ The minima happens at ๐‘ = โˆ’ าง ๐‘ โ€ ๐œ„๐‘” ๐‘ โ€ข Then: าง ๐‘ = 0 at the ground state! โ†’ CP violation might not be observed! ๐œ„ + ๐‘” 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend