axion dark matter searches iaxo
play

Axion Dark Matter searches @ IAXO Javier Redondo LMU,MPP, Munich - PowerPoint PPT Presentation

Axion Dark Matter searches @ IAXO Javier Redondo LMU,MPP, Munich Axion Dark Matter a ( ) - Axion, a(x) : 0 - fi eld associated with QCD a ( x ) /f a substructure? BE? transients? 1 m a = 0 . 006 eV10 9 GeV virialized DM mass,


  1. Axion Dark Matter searches @ IAXO Javier Redondo LMU,MPP, Munich

  2. Axion Dark Matter ˜ a ( ω ) - Axion, a(x) : 0 - fi eld associated with θ QCD → a ( x ) /f a substructure? BE? transients? ∝ 1 m a = 0 . 006 eV10 9 GeV virialized DM mass, couplings, f a f a δω ω ∼ 10 − 6 ω - Cold Dark Matter as a classical fi eld a ( t ) ∼ a 0 cos( m a t ) m a - Local DM density: ρ CDM ⌘ 1 0 ' 0 . 3GeV 2 m 2 a a 2 cm 3 ! θ ( t ) ⇠ O (10 − 19 ) E ff ects depend on couplings - Predictions: 10 10 10 10 10 9 10 9 10 8 10 8 10 7 10 7 α s 8 π G e oscillating neutron EDM G θ ( t ) Observed relic density? d n ∼ O (10 − 34 e cm) × cos( m a t ) f a [GeV] α Electric (magnetic) fi elds 10 17 10 16 10 15 10 14 10 13 10 12 10 11 10 10 10 9 2 π E · B ext θ ( t ) c γ E ∼ O (10 − 12 V / m) | B ext | 10 T c γ × cos( m a t ) Scenario I 1 1 10 - 4 10 - 4 10 - 3 10 - 3 10 - 2 10 - 2 10 - 1 10 - 1 B ∼ O (10 − 20 T) | B ext | 10 T c γ × cos( m a t ) Scenario II α pol. & freq. changes 1 10 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 10 2 10 3 2 π E · B θ ( t ) c γ ν [GHz] cosmic rays 10 - 11 10 - 10 10 - 9 10 - 8 10 - 7 10 - 6 10 - 5 10 - 4 10 - 3 10 - 2 ¯ Spin precession ψγ 5 γ ν ψ ∂ µ θ ( t ) m a [eV] freq. dep. forces

  3. Detecting EM fi elds from Axion Dark Matter - Haloscope (Sikivie 83) “Amplify resonantly the EM fi elds created by axionDM in a B- fi eld in a cavity” ✓ c γ α | B | ◆ 2 P out = κ ρ CDM [ V m a ] G Q (on resonance) 2 π f a m a | E a | 2 ∝ c 2 γ B 2 ν [GHz] 10 - 1 10 2 1 10 10 3 10 3 - Past experiments Florida U., RBF, ADMX, CARRACK RBF IAXO - Future endeavors: ADMX, ADMX-HF, YMCE, CAPP 10 2 10 2 ADMX - Parameters unexplored at low and high masses: WHY? UF ADMX-HF 10 10 Cylindrical cavity ( h/r=b) like ADMX but scaled ADMX2 KSVZ CARRACK? c γ Scenario I ADMX Scenario II 1 1 DFSZ 1 ( V ∝ m − 3 a ) P out ∝ V m a ∼ - Signal m 2 10 - 1 10 - 1 a 10 - 7 10 - 6 10 - 4 10 - 3 P noise = T sys ∆ ν a ∝ m 2 10 - 5 - Noise a m a [ µ eV] N = P out S p ∆ ν a ∆ ν a t - Signal/noise in of time, t, P noise Very easy, but needs Very complicated, ∝ c 4 d ∆ m a 1 large magnet volume! γ needs new ideas... - Scanning rate IAXO!!!!!!!!!!!!!!!!!!!!! m 9 m a dt a

  4. IAXO magnet (Shilon et al JINST 9 (2014) T05002 fi eld map of transverse cut - Length = 20 m 2 - Magnetised radius ~ 1 m - Peak value ~ 5.4 T 1 - Average in bore 2.5 T - Available T ~ 4.5 K 0 (but warm bores in design) - 1 - 2 - Comparison B 2 V with other haloscope magnets is promising x [ m ] - 2 - 1 0 1 2 ADMX ADMX-HF IAXO CAST B [T] 8 9 2.5 * 9 Dimensions [cm] h,R =100,21 h,R =25,5 h,R* =2000,30 h,R =920,2.2 V [L] 140 2 8 x 1700 2 x 14 P out ∝ | B | 2 V [T 2 L] 9000 160 8 x 35000 2 x 1100

  5. Low mass axion DM search in IAXO 2 - Geometry is not optimal for cylindrical cavity 1 - Use a big rectangular cavity (Baker et al , PRD D85 035018) 0 ◆ 2 ✓ l π ⇣ n π ⌘ 2 ⇣ m π ⌘ 2 ω 2 nml = + + w h L - 1 - w =1 m , h =0.5 m , L = 20 m - 2 x [ m ] - 2 - 1 0 1 2 L - Searching in the fundamental mode TE101 TE101 w ∼ 0 . 6 µ eV1 m ω 101 ∼ π h w G = 64 π 4 = 0 . 66 w ν [GHz] 10 - 1 10 2 1 10 2 π h 10 3 10 3 Q ( w, h ⌧ L ) ⇠ RBF 2 w + 4 h ω 101 δ IAXO IAXO (3 years) 10 2 10 2 - Very preliminary/rough and conservative estimates ADMX UF ADMX-HF ✓ B � dm a µ eV ◆ 2 ✓ 5 . 5 K ◆ r S ◆ ✓ Q t 10 10 G � ∼ 4 c 4 N = 2 c 2 � 3 . 5 × 10 5 / √ m 6 γ dt year γ 2 . 5T T sys 0 . 65 1min ADMX2 � S/N =3 KSVZ CARRACK? c γ ADMX 1 1 DFSZ - Possible (cryo. to 1+ K, best magnet position) 10 - 1 10 - 10 - 7 10 - 6 10 - 4 10 - 3 10 - 5 m a [eV]

  6. more... - High Q cavity requires good stability of temperature, mechanical vibrations, etc... - Not compatible with solar tracking (?) - After IAXO solar run - Up to 8 cavities! - Optimise the location and compare with in-coil con fi guration G 1.0 0.8 0.6 0.5 0.4 0.0 0.2 x 0 - 0.5 0.6 0.8 1.0 1.2 1.4 w=1m, h=0.5m - 1.0 0.5 1.0 1.5 2.0 2.5 x 0 Baker et al , PRD D85 035018 - Tunning; dielectric rods, other ideas

  7. high mass axion DM searches ... ideas - Boost all ADMX-like parameters (with ADMX-HF), CAPP - develop Q-limited ampli fi es beyond 10 GHz (SQUIDs, JPAs: Shokair et al 1405.3685) - bolometers (CARRACK, Lamoreaux 1306.3591) - superconducting fi lms to boost Q (Shokair et al 1405.3685) - multirod cavities + combine cavities (Kinion, UMI-30-19020) + Rectangular cavities (Baker et al , PRD D85 035018) + Dish antenna ( Horns et al JCAP04(2013)016 ) + Dielectric mirrors ( Jaeckel PRD 88 (2013) ) - Open resonators ( Hong et al , 1403.1576 ) - Fabry-Perot resonators ( Rybka, 1403.3121 ) - Dielectric resonators ( Jaeckel Ringwald, PLB659 509 )

  8. Rectangular cavities L - fi xed m a , maximise power? TE101 h P ∝ [ V m a ] G Q ∼ [ whLm a ] 64 1 4 h + 2 w → hL 1 h π 4 n 2 ωδ m a w m a = ω n 01 ∼ n π TE101 tune w (independent of n ...) maximise transverse area! not the fundamental! Crossings with TE0ml (avoided?, coupling?) R+D in progress (B. Gimeno Valencia U., J.D. Gallego, Yebes O.) - cavity(s) to reach SCENARIO-II ?

  9. Flat rectangular cavities - h= 1 m, L= 20 m , w tuned to m a , ~40 cavities (15% tuning), 1 year 10 2 1 10 10 3 10 3 10 2 T sis 10 2 10 2 10 2 1 (4.5 + HEMT) K (4.5 + QL) K y [ m ] (1.3 + HEMT) K 10 10 10 10 0 (1.3 + QL) 1 1 1 1 - 1 10 - 1 10 - 1 10 - 1 10 - 1 - 2 10 - 6 10 - 6 10 - 6 10 - 4 10 - 4 10 - 4 10 - 3 10 5 10 - 5 10 5 x [ m ] m a [eV] - 2 - 1 0 1 2 - Boost the power even more by combining N equal cavities coherently (high Q?) ◆ 2 ✓ P out dm a 1 ∝ 1 γ Q V 2 × N 2 ∝ c 4 m a dt Q T sis trade part of the Q for a large number prospects ranging 1-100 (# with increasing mass), ( Q =3000 to 500) Kinion, UMI-30-19020

  10. Dish Antenna (Horns et al JCAP1304016, Jaeckel & JR JCAP1311016, PRD 88, 2013) - Trade cavity’s Q for volume (well... area...) [ V m a ] G Q ↔ A ✓ c γ α | B | ◆ 2 P out ' ρ CDM A 2 π f a m a - Broadband (cavity has to tuned to get Q ), here the band is limited by ampli fi er noise and gain (1 octave) - IAXO (B~ 2.5 T, A ~ 1 m 2 , t=year , T sis =QL) 10 2 1 10 10 3 10 3 is NOT enough for ρ CDM = 0 . 3GeV / cm 3 8-Dish IAXO QL - Dielectric layers enhance the emission (in phase) 10 2 10 2 P × N 2 10 10 c γ 1 1 + back production and all re fl exions ... 10 - 1 10 - 1 λ / 2 Alternating N layers of low/high, 10 - 6 10 - 4 10 - 3 10 - 5 turn your “dielectric mirror” into a resonator, (+narrows the band) m a [eV] Enhancements Q ~ N 2 are feasible in small bands ∆ m a ∼ m a /N 2

  11. Dish Antenna (Horns et al JCAP1304016, Jaeckel & JR JCAP1311016, PRD 88, 2013) - IAXO (B~ 2.5 T, A ~ 1 m 2 , t=year , T sis =QL) 10 2 10 2 1 1 10 10 10 3 10 3 10 3 10 3 is NOT enough for ρ CDM = 0 . 3GeV / cm 3 8-Dish IAXO QL 10 2 10 2 10 2 10 2 - 0.1-1 meV range is most interesting in Scenario-II 10 10 10 10 8-Dish IAXO SYS - S-II predicts miniclusters of axion CDM c γ Scenario II 1 1 1 1 M mc ∼ 10 � 12 M � Ω mc / Ω a CDM ∼ O (1) 10 - 1 10 - 1 10 - 1 10 - 1 10 - 6 10 - 6 10 - 4 10 - 4 10 - 3 10 - 3 10 - 5 10 - 5 m a [eV] Zurek et al 07, See also Kolb & Tkachev 94 - Encounter with the Earth (every 10 4 years) ρ CDM × 10 6 , Q a ∼ 10 9 , t ∼ 3days - IAXO would see a huge signal, even with a realistic detector!!!!

  12. Conclusions ν [GHz] 10 - 1 10 2 1 10 10 3 10 3 - IAXO huge magnetic volume IAXO big-box (3 years) IAXO RBF can have extraordinary applications in Axion Dark Matter 10 2 10 2 IAXO fl at # ADMX UF 10 10 ADMX-HF - Low mass, rectangular cavities plum KSVZ ADMX2 CARRACK? c γ 1 1 - Intermediate mass, combine DFSZ ADMX IAXO 8 DISH (SC-II) fl at rectangular cavities (R+D needed!) minicluster and QL detectors up to 20 GHz (JPAs?) 10 - 1 10 - 1 10 - 7 10 - 6 10 - 4 10 - 3 10 - 5 m a [ µ eV] - High mass is di ffi cult But mostly interesting for SC-II which implies miniclusters 8 Dish in IAXO can cover the 0.01-1 meV range continuously (1 encounter/10 4 years...?) - Other possibilities under scrutiny!

  13. Thanks!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend