detecting axion dark matter with superconducting qubits
play

Detecting Axion Dark Matter with Superconducting Qubits Akash - PowerPoint PPT Presentation

Detecting Axion Dark Matter with Superconducting Qubits Akash Dixit, Aaron Chou, Dave Schuster University of Chicago avdixit@uchicago.edu 1 Axion Dark Matter Broken U1 symmetry introduced to solve Strong CP problem (Peccei & Quinn)


  1. Detecting Axion Dark Matter with Superconducting Qubits Akash Dixit, Aaron Chou, Dave Schuster University of Chicago avdixit@uchicago.edu 1

  2. Axion Dark Matter • Broken U1 symmetry introduced to solve Strong CP problem (Peccei & Quinn) • Boson from symmetry breaking may be Dark Matter • Behaves as a coherent wave over distances larger than experiment (~100m) 2

  3. Axion-Photon Conversion L ∼ ga E · B ∼ g ∂ a ( t ) ∂ t B 0 ( x ) · A ∼ J a · A 3

  4. Microwave Receiver Use axion induced current to drive cavity f ∼ m a Currently operating ~1GHz, R&D ~10GHz 4

  5. Single Photon Counting 5

  6. Harmonic Oscillator + Two Level System H = ω c a † a + ω q σ z + 2 g 2 ∆ a † a σ z : cavity-qubit coupling g ∆ = ω q − ω c detuning χ = g 2 Stark Shift ∆ 6

  7. Experimental Procedure Axion induced current Cavity occupation shifts pumps cavity with photon qubit transition H = ω c a † a + ( ω q + 2 g 2 ∆ a † a ) σ z Excite qubit at Measure flipped qubit by shifted frequency monitoring cavity line shift H = ( ω c + 2 g 2 ∆ σ z ) a † a + ω q σ z 7

  8. Cavity Design H = ω c a † a 10mm 8

  9. Cavity Mode 9

  10. Custom Atom H = ω q σ z Design your own - Frequency - Dipole Moment Harmonic Oscillator (LC) + nonlinearity (Josephson Junction) ω q = E 1 − E 0 10

  11. Pritzker Nanofab Lab @UChicago Fluorine Etcher Electron Beam Lithography Not pictured: -Double Angle Evap -Thermal Evap -Dicing Saw Optical Direct Writer -SEM -Sputter Coater 11

  12. Qubit m µ 0 2 × m µ 0 2 m m 1 12mm Nb optically patterned and etched to Qubits on wafer form dipole arms and capacitive pads 12

  13. Qubit a. a. Electron beam junction patterning b. Scanning electron microscopy c. Josephson Junction 20µm b. c. 253 nm 1 µm 260 nm Josephson Junction 13

  14. Cavity + Qubit H int = 2 g 2 ∆ a † a σ z g ∼ d · E ( x ) Dipole arms + qubit location in cavity set qubit-cavity coupling 14

  15. Bare Qubit ω q 15

  16. Experimental Procedure Axion induced current Cavity occupation shifts pumps cavity with photon qubit transition H = ω c a † a + ( ω q + 2 g 2 ∆ a † a ) σ z Excite qubit at Measure flipped qubit by shifted frequency monitoring cavity line shift H = ( ω c + 2 g 2 ∆ σ z ) a † a + ω q σ z 16

  17. Cavity Dependent Qubit ω q Cavity occupation | n = 0 i ω q − χ shifts qubit transition | n = 1 i ω q − 2 χ χ ∼ 15 MHz | n = 2 i 17

  18. Qubit Interrogation ω q − χ | n = 1 i Apply pi pulse at π shifted qubit frequency 18

  19. Confirm Qubit Flip w/ Cavity χ ∼ 15 MHz Measure excited qubit by monitoring cavity line shift 19

  20. Conclusion Shift penalties of standard quantum limit by counting photons rather than absorbing them I make solid state superconducting detectors with customizable interactions with an EM environment I employ quantum computing techniques/devices for dark matter cosmology experiment 20

  21. Thank you 21

  22. SiDet tour Friday 1:00-3:30 pm 22

  23. References [1] D.I. Schuster. Circuit Quantum Electrodynamics . PhD thesis, Yale University, 2007. [2] B.R. Johnson. Controlling Photons in Superconducting Electrical Circuits . PhD thesis, Yale University, 2011. [3] S. K. Lamoreaux, K. A. van Bibber, K. W. Lehnert, and G. Carosi. Analysis of single-photon and linear amplifier detectors for microwave cavity dark matter axion searches . Phys. Rev. D, 88:035020, Aug 2013. [4] V Bouchiat, D Vion, P Joyez, D Esteve, and M H Devoret. Quantum coherence with a single cooper pair . Physica Scripta, 1998(T76):165, 1998. [5] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from the cooper pair box . Phys. Rev. A, 76:042319, Oct 2007. [6] Simon E. Nigg, Hanhee Paik, Brian Vlastakis, Gerhard Kirchmair, S. Shankar, Luigi Frunzio, M. H. Devoret, R. J. Schoelkopf, and S. M. Girvin. Black-box superconducting circuit quantization . Phys. Rev. Lett., 108:240502, Jun 2012. [7] http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.105.173601 [8] https://arxiv.org/pdf/1206.1265.pdf 23

  24. Cavity 24

  25. Fourth order term, Cavity nonlinearity 25

  26. Qubit Rabi Oscillations 26

  27. Qubit Decay 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend