a reduced basis approach to the reduction of computations
play

A Reduced-Basis Approach to the Reduction of Computations in - PowerPoint PPT Presentation

A Reduced-Basis Approach to the Reduction of Computations in Multiscale Models & Uncertainty Quantification Sbastien Boyaval 1 , 2 , 3 1 Univ. Paris Est , Laboratoire dhydraulique Saint-Venant (EDF R&D Ecole des Ponts Paristech


  1. A Reduced-Basis Approach to the Reduction of Computations in Multiscale Models & Uncertainty Quantification Sébastien Boyaval 1 , 2 , 3 1 Univ. Paris Est , Laboratoire d’hydraulique Saint-Venant (EDF R&D – Ecole des Ponts Paristech – CETMEF), Chatou, France 2 INRIA , MICMAC team–project, Rocquencourt, France RICAM workshop on Numerical Analysis of Multiscale Problems & Stochastic Modelling, Linz, December 2011

  2. Outline Introduction: why do we need to reduce computations ? 1 A multiscale paradigm: 2-scale homogenization 2 3 A standard use of the Reduced-Basis (RB) method A paradigm for uncertainty quantification: PDEs with 4 random input 5 RB Variance Reduction in parametrized Monte-Carlo Another multiscale paradigm: complex fluids 6 Conclusion: when shall one use RB ? 7 S. Boyaval 2 / 43 Reduced-Basis and stochastics

  3. Taking perturbations into account is demanding Micro-Macro models (multiscale) couple algorithms ( S / P / D ) Equation [ α ]( u ) = 0 in Ω , ∂ Ω (1) α ( x ) = F ( w ( x )) ∀ x ∈ Ω (2) ∀ x ∈ Ω ( s / p / d ) equation [ x ]( w ) = 0 in Y [ x ] (3) (using mathematical frameworks: homogenization, non-equilibrium molecular dynamics. . . ) Uncertainty quantification (UQ) cares about fine statistics of u under the law generated by α A Reduced-Basis approach to computational reductions ? [2] B., SIAM MMS 7(1), 2008. [3] B., Le Bris, Maday, Nguyen, Patera, CMAME, 2009. [4] B., Lelièvre, CMS 8, 2010. S. Boyaval 3 / 43 Reduced-Basis and stochastics

  4. Outline Introduction: why do we need to reduce computations ? 1 A multiscale paradigm: 2-scale homogenization 2 3 A standard use of the Reduced-Basis (RB) method A paradigm for uncertainty quantification: PDEs with 4 random input 5 RB Variance Reduction in parametrized Monte-Carlo Another multiscale paradigm: complex fluids 6 Conclusion: when shall one use RB ? 7 S. Boyaval 4 / 43 Reduced-Basis and stochastics

  5. Ideal composites with 2-scale heterogeneity Scanning Electron Microscope Synthetic material (Google entry “microstructure”) (numerical modelling) S. Boyaval 5 / 43 Reduced-Basis and stochastics

  6. Problem: fast-oscillating diffusion Numerical problem: Compute u ǫ ( x ) solution in D ⊂ R d to − div ( A ǫ ( x ) ∇ u ǫ ( x )) = f ( x ) (4) + Boundary Conditions (BC) for u ǫ on ∂ D , but u ǫ is expected to vary “fast” ! like A ǫ , where “fast” = at scale ǫ ≪ |D| Finite-Element (FE) discretization using simplices of size |D| / h d � |D| /ǫ d � � � h ≤ ǫ for D ⇒ O ≥ O ≫ 1 d.o.f required ! Discretization of a transformed problem → homogenization S. Boyaval 6 / 43 Reduced-Basis and stochastics

  7. Sketch of homogenization procedure I. Problem transformed to a new problem: For some ( A ǫ ) ǫ> 0 , find u ⋆ ← u ǫ solution to − div ( A ⋆ ∇ u ⋆ ) = f H − A ǫ [Murat-Tartar] as ǫ → 0. +BC where A ⋆ ← Rm1: ( A ǫ ) ǫ> 0 is not given in practice ; weak hypotheses suffice, but computing oscillating functions ( z ǫ j ) ∈ H 1 ( D ) such that ǫ → 0 A ⋆ ( x ) e j · e i L 2 ( D ) − weak A ǫ ( x ) ∇ z ǫ ← − − − − − − − − j ( x ) · e i may be hard ! II. How to make computational use of the new problem ? Can we compute u ⋆ faster than FEM and evaluate the error ? Rm2: A ǫ ( x ) = A ( x , x ǫ − [ x ǫ ]) 2-scale periodic, z ǫ x , x � � j = x j + ǫ w j ǫ then computable through − div y ( A ( x , y ) · [ e j + ∇ y w j ( x , y )]) = 0 and � u ǫ − u ⋆ � L 2 (Ω) = O ( ǫ ) holds + “corrected” H 1 approximation S. Boyaval 7 / 43 Reduced-Basis and stochastics

  8. Efficient multiscale computations The transformed problem is still a numerical challenge: A ⋆ ( x ) at many quadrature points requires to solve at many x ∈ D − div y ( A ( x , y ) · [ e j + ∇ y w j ( x , y )]) = 0 A generic difficulty in all numerical homogenization procedures (MsFEM,HMM,...: many micro computations) and a paradigm for many micro-macro models. A posteriori error control can moderate the problem by choos- ing good quadratures in D [Ohlberger ; Abdulle . . . ], yet some gain is still possible using a Reduced-Basis approximation (in- voking accurate solutions only at a few well-chosen points x n , n = 1 , . . . , N ) N � w i ( x , · ) ≃ w i , N ( x , · ) = α n ( x ) w i ( x n , · ) n = 1 S. Boyaval 8 / 43 Reduced-Basis and stochastics

  9. Outline of the talk 1 Introduction: why do we need to reduce computations ? 2 A multiscale paradigm: 2-scale homogenization A standard use of the Reduced-Basis (RB) method 3 4 A paradigm for uncertainty quantification: PDEs with random input RB Variance Reduction in parametrized Monte-Carlo 5 Another multiscale paradigm: complex fluids 6 Conclusion: when shall one use RB ? 7 S. Boyaval 9 / 43 Reduced-Basis and stochastics

  10. Standard (elliptic) RB framework Assume one can parametrize { w i ( x ) , x ∈ D} with µ ∈ Λ ⊂ R P . Problem: compute w i ( µ ) ∈ X = H 1 ♯ ( Y ) for many µ ∈ Λ ⊂ R P solution to a ( w i , v ; µ ) = f i ( v ; µ ) ∀ v ∈ X where � a ( u , v ; µ ( x )) = Y A ( x , y ) ∇ u ( y ) · ∇ v ( y ) dy ∀ ( u , v ) ∈ X × X � f i ( v ; µ ( x )) = − Y A ( x , y ) e i · ∇ v ( y ) dy ∀ v ∈ X , 1 ≤ i ≤ n + outputs A ⋆ i , j ( x ) at quadrature points x � s ij ( µ ) = − f j ( w i ; µ ( x )) = Y A ( x , y ) ∇ w i ( x , y ) · e j dy RB method: w ( µ ) ≃ w N ( µ ) ∈ X N spanned by “snapshots” � w ( µ N � 1 select X N = Span n ) , n = 1 , . . . , N ⊂ X (hopefully { w ( µ ) , µ ∈ Λ } is close to small-dimensional) 2 compute fast many w N ( µ ) ∈ arginf {� w ( µ ) − v � µ, X , v ∈ X N } (reduction hopefully efficient at given fixed accuracy ε ) S. Boyaval 10 / 43 Reduced-Basis and stochastics

  11. RB principles to be put in practice A µ -parametrized elliptic pb. a ( w ( µ ) , v ; µ ) = l ( v ) , ∀ v ∈ X Given µ , find w ( µ ) ∈ X solution to − div ( A ( µ ) ∇ w ( µ )) = f + BC � w N best approx. in energy (Galerkin): � · � µ, X = a ( · , · ; µ ) X N N -linear space minimizing L ∞ : sup � w ( µ ) − w N ( µ ) � µ, X µ goal-oriented cases (like homogenization ) → RB also for adjoint eq. [Porsching . . . Maday, Patera, Turinici, Prud’homme, Rozza, Haasdonk, Ohlberger . . . ] Amounts to numerical approximation of “best N -linear space”: � � � w ( µ ) − w N ( µ ) � µ, X ≤ ǫ X N is a minimizer of inf sup µ 1 ,...,µ N µ [Maday, Patera, Turinici, Prud’homme, Buffa, Binev, Cohen, Dahmen, Devore . . . ] S. Boyaval 11 / 43 Reduced-Basis and stochastics

  12. 1) Constructive approximation of X N µ discretization + a posteriori esimator + greedy algorithm Provided a good discretization X N of X (d.o.f. N ≫ 1), � w N ( µ N n ) ≈ w ( µ N � build X N = Span n ); n = 1 , . . . , N using 1 a posteriori estimators ∆ N , N ( µ ) ≥ � w N ( µ ) − w N ( µ ) � µ, X , 2 a greedy algorithm selecting iteratively ( n = 1 . . . ) µ N n = µ n in a training sample while sup { ∆ N , N ( µ ) , µ ∈ sample } ≥ ε � � µ 1 = rand (); µ n + 1 ∈ , n = 1 , . . . , N − 1 sup ∆ N , n ( µ ) µ ∈ sample and use X N and precomputations for all queried µ to compute fast approximations w N ( µ ) that can be certified ∆ N , N ( µ ) ≤ ǫ ! Technical issue (application): cheap estimator, precomputation S. Boyaval 12 / 43 Reduced-Basis and stochastics

  13. A case-dependent step in RB methodology ! Residual error estimation (with α A > 0 coercivity constant) � w i ( x , · ) − w i , N ( x , · ) � X ≤ ∆ N ( w i ( x , · )) = � a ( w i ( x , · ) − w i , N ( x , · ) , · ; x ) � X ′ α A ( x ) | s ij ( x ) − s ij , N ( x ) | ≤ ∆ s ij , N ( x ) = α A ( x ) ∆ N ( w i ( x , · )) ∆ N ( w j ( x , · )) controls RB error in outputs (w.r.t N -dimensional FE space X N ) � s ij , N ( x ) = A ( x , y ) ∇ w i , N ( x , y ) · e j dy Y � A ⋆ A ( x , y )[ e i + ∇ y w i , N ( x , y )] · e j dy N ( x ) i , j = Y S. Boyaval 13 / 43 Reduced-Basis and stochastics

  14. 2) Assembling fast the problem at any µ Typical parametrization for homogenization: moving inclusion with varying contrast y 2 ✻ 1 c 2 A ( x , · ) b 2 ✲ 0 0 b 1 c 1 1 y 1 Need to rebuild FE rigidity matrix at each x ∈ D ! � a ( u , v ; x ) = A ( x , y ) ∇ u ( y ) · ∇ v ( y ) dy ∀ ( u , v ) ∈ X N × X N Y S. Boyaval 14 / 43 Reduced-Basis and stochastics

  15. Preprocessing trick: affine parametrization ∀ x ∈ D map Y ⊂ � d k = 1 Y k ( x ) partitioned into d nonoverlapping subsets Y k ( x ) to Y ⊂ � d k = 1 Y 0 k using . . . affine homeomorphisms Φ k ( x , · ) : Y 0 k → Y k ( x ) , 1 ≤ k ≤ d , affine parametrization for ( A ( x , Φ( x , · ))) x ∈D on each Y 0 k , Z � ∀ y ∈ Y 0 A ( x , Φ k ( x , y )) = A 0 ( y ) + Θ q ( x ) A q ( y ) (5) k q = 1 ⇒ matrix easily computed after variable change y ′ = Φ − 1 ( x , y ) (but new affine-equivalent mesh has spline-distorted shape functions φ i , beware aspect ratio !) � A q ( y ′ ) ∇ φ i ( y ′ ) · ∇ φ j ( y ′ ) | det ( ∇ y Φ k ( x , y ′ )) | dy ′ Θ q ( x ) Y S. Boyaval 15 / 43 Reduced-Basis and stochastics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend