some issues on electrical impedance tomography with
play

Some issues on Electrical Impedance Tomography with complex - PowerPoint PPT Presentation

Some issues on Electrical Impedance Tomography with complex coefficient Elisa Francini (Universit` a di Firenze) in collaboration with Elena Beretta and Sergio Vessella E. Francini (Universit` a di Firenze) EIT 1 / 42 Outline 1 Electrical


  1. Some issues on Electrical Impedance Tomography with complex coefficient Elisa Francini (Universit` a di Firenze) in collaboration with Elena Beretta and Sergio Vessella E. Francini (Universit` a di Firenze) EIT 1 / 42

  2. Outline 1 Electrical Impedance Tomography with complex coefficient 2 Reconstruction from the DN map: a stability result. 3 Size estimate from a single boundary measurement. E. Francini (Universit` a di Firenze) EIT 2 / 42

  3. Electrical Impedance Tomography Electrical Impedance Tomography: Determine electrical conductivity and permittivity in the interior of a body by measurements of electric currents and voltages at the boundary of the body. Medical diagnostics: detection of pulmonary emboli, breast tumours, screening of organs in transplant surgery Nondestructive testing of materials: detection of corrosion or cracks Geophysical prospection: detection of underground mineral deposits E. Francini (Universit` a di Firenze) EIT 3 / 42

  4. Mathematical model γ : Ω ⊂ R n → C complex admittivity function γ = σ + i ωǫ electrical conductivity frequency electrical permittivity σ ≥ λ − 1 > 0 (dissipation of energy) , | γ | ≤ λ The potential u ∈ H 1 (Ω , C ) is a weak solution to equation div ( γ ∇ u ) = 0 in Ω . Boundary data: u | ∂ Ω and γ ∂ u ∂ν | ∂ Ω . E. Francini (Universit` a di Firenze) EIT 4 / 42

  5. Mathematical model γ : Ω ⊂ R n → C complex admittivity function γ = σ + i ωǫ electrical conductivity frequency electrical permittivity σ ≥ λ − 1 > 0 (dissipation of energy) , | γ | ≤ λ The potential u ∈ H 1 (Ω , C ) is a weak solution to equation div ( γ ∇ u ) = 0 in Ω . Boundary data: u | ∂ Ω and γ ∂ u ∂ν | ∂ Ω . E. Francini (Universit` a di Firenze) EIT 4 / 42

  6. Mathematical model γ : Ω ⊂ R n → C complex admittivity function γ = σ + i ωǫ electrical conductivity frequency electrical permittivity σ ≥ λ − 1 > 0 (dissipation of energy) , | γ | ≤ λ The potential u ∈ H 1 (Ω , C ) is a weak solution to equation div ( γ ∇ u ) = 0 in Ω . Boundary data: u | ∂ Ω and γ ∂ u ∂ν | ∂ Ω . E. Francini (Universit` a di Firenze) EIT 4 / 42

  7. Part I Reconstruction from infinite boundary measurements E. Francini (Universit` a di Firenze) EIT 5 / 42

  8. DN map Given f ∈ H 1 / 2 ( ∂ Ω) there exists a unique weak solution u ∈ H 1 (Ω) of the problem � div ( γ ∇ u ) = 0 in Ω = on ∂ Ω . u f Consider the Dirichlet to Neumann map Λ γ : H 1 / 2 ( ∂ Ω) → H − 1 / 2 ( ∂ Ω) given by Λ γ f = γ ∂ u , ∂ν | ∂ Ω where ν is the exterior unit normal vector to ∂ Ω. EIT Inverse Problem: Determine γ from the knowledge of the Dirichlet-to Neumann map Λ γ E. Francini (Universit` a di Firenze) EIT 6 / 42

  9. DN map Given f ∈ H 1 / 2 ( ∂ Ω) there exists a unique weak solution u ∈ H 1 (Ω) of the problem � div ( γ ∇ u ) = 0 in Ω = on ∂ Ω . u f Consider the Dirichlet to Neumann map Λ γ : H 1 / 2 ( ∂ Ω) → H − 1 / 2 ( ∂ Ω) given by Λ γ f = γ ∂ u , ∂ν | ∂ Ω where ν is the exterior unit normal vector to ∂ Ω. EIT Inverse Problem: Determine γ from the knowledge of the Dirichlet-to Neumann map Λ γ E. Francini (Universit` a di Firenze) EIT 6 / 42

  10. DN map Given f ∈ H 1 / 2 ( ∂ Ω) there exists a unique weak solution u ∈ H 1 (Ω) of the problem � div ( γ ∇ u ) = 0 in Ω = on ∂ Ω . u f Consider the Dirichlet to Neumann map Λ γ : H 1 / 2 ( ∂ Ω) → H − 1 / 2 ( ∂ Ω) given by Λ γ f = γ ∂ u , ∂ν | ∂ Ω where ν is the exterior unit normal vector to ∂ Ω. EIT Inverse Problem: Determine γ from the knowledge of the Dirichlet-to Neumann map Λ γ E. Francini (Universit` a di Firenze) EIT 6 / 42

  11. Known results Uniqueness n ≥ 3 If γ is sufficiently smooth the results obtained by Sylvester and Uhlmann (1987, Ann. of Math.) for the conductivity case can be extended to the complex case. (Λ γ 1 = Λ γ 2 implies γ 1 = γ 2 ) n = 2 F.(2000, Inverse Problems) for small frequencies ω , Bukhgeim for arbitrary frequencies and smooth coefficients (2008, Inv. Ill Posed Problems). n ≥ 3 , γ ∈ L ∞ (Ω) completely open arinta for real conductivities σ ∈ L ∞ (Ω) ( 2006, n = 2 Astala and P¨ aiv¨ Ann. of Math.) E. Francini (Universit` a di Firenze) EIT 7 / 42

  12. Known results Stability n ≥ 3 Alessandrini (1988, Appl. Anal.) has proved for the conductivity case that if � σ j � W 2 , ∞ (Ω) ≤ E for j = 1 , 2, then � σ 1 − σ 2 � L ∞ (Ω) ≤ ω ( � Λ σ 1 − Λ σ 2 � ) where ω ( t ) = C | log t | − η . n = 2 Barcelo, Faraco and Ruiz (2007, Jour. Math. Pures Appl.) have proved for the conductivity case an analogous logarithmic estimate under the a priori assumption � σ � C α (Ω) ≤ E . Clop, Faraco, Ruiz (2009, IPI) for σ j ∈ W α, p , α > 0, j = 1 , 2, and 1 < p < ∞ then � σ 1 − σ 2 � L 2 (Ω) ≤ ω ( � Λ σ 1 − Λ σ 2 � ) where ω ( t ) = C | log t | − η . E. Francini (Universit` a di Firenze) EIT 8 / 42

  13. A priori assumptions Mandache (2001, Inverse Problems) has proved that logarithmic stability is the best possible stability also using as a-priori assumption � σ � C k (Ω) ≤ E , ∀ k = 0 , 1 , 2 .... E. Francini (Universit` a di Firenze) EIT 9 / 42

  14. Strategy: Look for a-priori assumptions on γ that are physically relevant give rise to a better type of stability Assume: γ is piecewise constant on known domains. In the real case: Alessandrini and Vessella (2005, Adv. in Appl. Math.) E. Francini (Universit` a di Firenze) EIT 10 / 42

  15. Strategy: Look for a-priori assumptions on γ that are physically relevant give rise to a better type of stability Assume: γ is piecewise constant on known domains. In the real case: Alessandrini and Vessella (2005, Adv. in Appl. Math.) E. Francini (Universit` a di Firenze) EIT 10 / 42

  16. Strategy: Look for a-priori assumptions on γ that are physically relevant give rise to a better type of stability Assume: γ is piecewise constant on known domains. In the real case: Alessandrini and Vessella (2005, Adv. in Appl. Math.) E. Francini (Universit` a di Firenze) EIT 10 / 42

  17. Main assumptions (H1) Ω ⊂ R n , bounded, | Ω | ≤ A , Lipschitz boundary (H2) γ ( x ) = � N j =1 γ j ✶ D j ( x ) unknown complex numbers known open sets D i ∩ D j = ∅ , i � = j , Lipschitz boundaries and ∪ N j =1 D j = Ω (H3) ∂ D 1 ∩ ∂ Ω contains an open flat portion Σ 1 . For every j ∈ { 2 , . . . , N } there exists a chain of subdomains connecting D 1 to D j so that consecutive domains share a flat portion of boundary E. Francini (Universit` a di Firenze) EIT 11 / 42

  18. A possible configuration D j D 1 Σ 1 E. Francini (Universit` a di Firenze) EIT 12 / 42

  19. Chain D j D 1 Σ 1 E. Francini (Universit` a di Firenze) EIT 13 / 42

  20. Main result Theorem Let Ω satisfy assumption (H1) . Let γ ( k ) , k = 1 , 2 be two complex piecewise constant functions of the form N γ ( k ) γ ( k ) ( x ) = � ✶ D j ( x ) , j j =1 where γ ( k ) satisfy for k = 1 , 2 assumption (H2) and D j , j = 1 , . . . , N satisfy assumption (H3) . Then there exists a positive constant C such that � γ (1) − γ (2) � L ∞ (Ω) ≤ C � Λ γ (1) − Λ γ (2) � L ( H 1 / 2 ( ∂ Ω) , H − 1 / 2 ( ∂ Ω)) . The constant C depends on the Lipschitz constant of the boundaries, on the volume of Ω , on n, N and λ . [Beretta, F., Comm. PDE, 2011] E. Francini (Universit` a di Firenze) EIT 14 / 42

  21. Main idea of the proof (uniqueness) Assume Λ γ (1) = Λ γ (2) � � � � γ (1) ∇ u 1 γ (2) ∇ u 2 div = 0 div = 0 in Ω ⇓ � � γ (1) − γ (2) � 0 = < (Λ γ (1) − Λ γ (2) ) u 1 , u 2 > = ∇ u 1 ∇ u 2 dx Ω We want to use this identity for ”singular” solutions E. Francini (Universit` a di Firenze) EIT 15 / 42

  22. Main idea of the proof (uniqueness) Assume Λ γ (1) = Λ γ (2) � � � � γ (1) ∇ u 1 γ (2) ∇ u 2 div = 0 div = 0 in Ω ⇓ � � γ (1) − γ (2) � 0 = < (Λ γ (1) − Λ γ (2) ) u 1 , u 2 > = ∇ u 1 ∇ u 2 dx Ω We want to use this identity for ”singular” solutions E. Francini (Universit` a di Firenze) EIT 15 / 42

  23. Main idea of the proof (uniqueness) Assume Λ γ (1) = Λ γ (2) � � � � γ (1) ∇ u 1 γ (2) ∇ u 2 div = 0 div = 0 in Ω ⇓ � � γ (1) − γ (2) � 0 = < (Λ γ (1) − Λ γ (2) ) u 1 , u 2 > = ∇ u 1 ∇ u 2 dx Ω We want to use this identity for ”singular” solutions E. Francini (Universit` a di Firenze) EIT 15 / 42

  24. Main idea of the proof (uniqueness) Assume Λ γ (1) = Λ γ (2) � � � � γ (1) ∇ u 1 γ (2) ∇ u 2 div = 0 div = 0 in Ω ⇓ � � γ (1) − γ (2) � 0 = < (Λ γ (1) − Λ γ (2) ) u 1 , u 2 > = ∇ u 1 ∇ u 2 dx Ω We want to use this identity for ”singular” solutions E. Francini (Universit` a di Firenze) EIT 15 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend