channel estimation schemes for ofdm relay assisted system
play

Channel Estimation Schemes for OFDM Relay-Assisted System Darlene - PowerPoint PPT Presentation

Channel Estimation Schemes for OFDM Relay-Assisted System Darlene Maciel, C. Ribeiro, A. Silva e Atlio Gameiro darlene@av.it.pt Workshop 2009 2 nd Dec, FEUP, Porto, Portugal Outline Introduction Motivation PACE Schemes


  1. Channel Estimation Schemes for OFDM Relay-Assisted System Darlene Maciel, C. Ribeiro, A. Silva e Atílio Gameiro darlene@av.it.pt Workshop 2009 2 nd Dec, FEUP, Porto, Portugal

  2. Outline • Introduction • Motivation • PACE Schemes • Simulation Scenario • Results • Conclusion • Future Works 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  3. Introduction: Diversity • Diversity is inherent in the physical layer: PHY diversity ▫ Time, frequency, space (antenna) and polarization diversity ▫ Combat the fading channel by trying to flatten the channel • Diversity can also be achieved in the MAC or higher layer: Network diversity ▫ Multiuser diversity (by scheduling or routing) ▫ Cooperative diversity (by cooperative transmission) 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  4. Introduction: Cooperation • Redundant transmission is realized via the cooperation of third party devices rather than solely from the originating device; D ▫ Node S cooperates with neighbors to send information to D  AF , DF , SDF or CF S Half dupplex AF: 2 phases  RN Received D S Transmitted signal signal Simple forms of cooperation involves 3 links 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  5. Introduction: Amplify-and-Forward Protocol RN D S • In the half duplex AF protocol receiver at D needs ▫ First phase: Estimate channel S-D: Single link  Conventional Channel Estimation  Second Phase: Estimate channel S-RN-D: ▫ Compound Channel  2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  6. Motivation: Equivalent Channel S RN D (1) ( ) (2) ( ) h t h t • Compound Channel      (1) (2) (1) (2) h h h h h h ( ) ( ) (t) ( ) ( ) ( ) t A t m A m m Eq Eq • The Power Delay Profile - PDP (1) (2) (1) (2) 2 ( ) ( ) | } PDP = E{| h t h t = PDP PDP Maximum delay = Delay channel 1 + Delay channel 2 # Taps of the compound channel will depend on the both channels PDP 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  7. Motivation: Equivalent Channel S RN D   (1) ( ) (2) ( ) (1) (2) , : 0, 1 ES h t h t h h • Two sources of Noise. The total noise at the D:         2 2 2 2 (2) (1) (2) {| | } 2 ( ) ( ) ( ) ( ) ( ) E ( ) A w m Ah m w m w m m w m t n n t t • Conditioned to a specific channel realization the noise variance:      2 2 2 2 2 (2) | ( )| ( ) A h m m t n n The conventional channel estimation schemes should be adapted to this scenario LS , MMSE 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  8. Motivation: Questions • Questions to be Solved: ▫ How does the statistics of the compound channel affect the performance of classical PACE in OFDM signalling? ▫ How much can be gained through the knowledge of ? (2) h 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  9. Classical Pilot Aided Channel Estimation Schemes • FD – LS (Least Square): ˆ h Channel ˆ P LS ˆ   1 h X Y AWGN h Estimator LS FD MMSE LS P P MMSE ˆ ˆ P Estimate  Filter h Wh + DFT LS LS Equalisation W : Interpolator • FD – MMSE (Mean Minimum Square Error) : ˆ  ˆ P h W h LS MMSE MMSE  Autocorrelation; R   1 W R R P MMSE HP P  Cross-correlation; R HP 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  10. Classical Pilot Aided Channel Estimation Schemes • TD-MMSE ˆ ˆ h Channel h MMSE LS TD MMSE CIR AWGN Estimator CIR Estimate Filter Group + Equalisation Example CIR estimate    [ ] Channel PDP R n Auto-correlation Function [ ] R n hh    hh   W n PDP PDP PDP   2 [ ] 1 2 R n  n    hh 2 2  n t 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  11. Simulation Scenario • Scenario and Parameter S RN D Modulation Path Delay(ns) QPSK Relative Power(dB) Sampling frequency (LTE) 1 0.0 15.36 MHz 0.0 # Subcarriers 2 65.1 (T) 1024 -0.7 Link Analized 3 260.4 (4T) Compound channel -0.8 For reference 4 586.0 (9T) Conv. SISO -6.0 Channels’ Noise statistics 5 1041.67 (16T) identical -10.0 Channel 6 1627.6 (25T) 7 Taps -14.0 7 2474.0 (38T) -19.0 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  12. Simulation Scenario • Simulation Parameters ▫ The pilots are multiplexing in the symbol: Frequency Data Pilot Nf= 32; 4 Time Nt= 1; 12 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  13. Results • FD – LS Estimator LS Channel Estimation LS Channel Estimation -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 MSE (dB) MSE (dB) -7 -7 Nf=32, Nt=1,Relay on Nf=32, Nt=1,Relay on -8 -8 Nf=32, Nt=12,Relay on Nf=32, Nt=12,Relay on Nf=4, Nt=1,Relay on -9 -9 Nf=4, Nt=1,Relay on Nf=4, Nt=12,Relay on Nf=4, Nt=12,Relay on -10 -10 Nf=32, Nt=1,Conv. SISO Nf=32, Nt=1,Conv. SISO Nf=32, Nt=12,Conv. SISO Nf=32, Nt=12,Conv. SISO -11 -11 Nf=4, Nt=1,Conv. SISO Nf=4, Nt=1,Conv. SISO Nf=4, Nt=12,Conv. SISO Nf=4, Nt=12,Conv. SISO -12 -12 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 E b /N0 (dB) E b /N0 (dB) 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  14. Results • TD – MMSE Estimator MMSE Channel Estimation MMSE Channel Estimation -8 -8 -10 -10 -12 -12 -14 -14 -16 -16 MSE (dB) MSE (dB) -18 -18 Nf=32, Nt=1,Relay on Nf=32, Nt=1,Relay on Nf=32, Nt=12,Relay on -20 -20 Nf=32, Nt=12,Relay on Nf=4, Nt=1,Relay on Nf=4, Nt=1,Relay on ≈ 5 dB -22 -22 Nf=4, Nt=12,Relay on Nf=4, Nt=12,Relay on Nf=32, Nt=1,Conv. SISO Nf=32, Nt=1,Conv. SISO -24 -24 Nf=32, Nt=12,Conv. SISO Nf=32, Nt=12,Conv. SISO Nf=4, Nt=1,Conv. SISO Nf=4, Nt=1,Conv. SISO -26 -26 Nf=4, Nt=12,Conv. SISO Nf=4, Nt=12,Conv. SISO -28 -28 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 E b /N0 (dB) E b /N0 (dB) 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  15. Example Point-to-point Channel PDP Magnitude 0.4 P2P Channel N1 = 7 Taps 0.2 0 0 10 20 30 40 50 Compound Channel  Compound Channel PDP 0.2 Magnitude conv (P2P Ch, P2P Ch) N2 = 27 Taps 0.1    0 1 1 1 N N  0 10 20 30 40 50 2 N 2 N2 can be quite larger than N1 Taps  SNR per Tap  MSE 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  16. How much can be gained through the Knowledge oh h2? Channel Estimation MSE vs. Eb/N0     2     2      2 2 2 2  A h m m 2 ChEst MSE (dB) n 2 mm -12 m t n n t  -14 2 n 2 No noticeable improvement by n -16 the knowledge of h2; -18 Number of non-zero taps << -20 Nc/Nf 0 5 10 Eb/N0 (dB) Filter design is robust to errors in the estimate of the noise variance 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  17. Conclusion • In AF the equivalent channel S-RN-D has a larger delay than point-to-point ▫ Increases the minimum pilot density that can be used; ▫ Degrades the performance of the MMSE; • The robustness of the TD-MMSE filter to errors in the estimate of noise variance • The knowledge of individual P2P channels does not bring any noticeable improvement; 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

  18. Future Works • Consider a scenario which the channel statistics can bring improvements to the channel estimate: ▫ Antenna array at the BS; ▫ Equalize-and-Forward Protocol; ▫ Power constraints at the RN; ▫ Channels with different statistics. 2 nd Dec, FEUP, Porto, Portugal MAP-Tele Workshop 2009

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend