unique continuation and new hohenberg kohn theorems
play

Unique continuation and new Hohenberg-Kohn theorems Louis Garrigue - PowerPoint PPT Presentation

Unique continuation and new Hohenberg-Kohn theorems Louis Garrigue Cirm, October 24, 2019 Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems Hohenberg-Kohn theorem N N H N ( v ) := i + w ( x i x j )


  1. Unique continuation and new Hohenberg-Kohn theorems Louis Garrigue Cirm, October 24, 2019 Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  2. Hohenberg-Kohn theorem N N � � � H N ( v ) := − ∆ i + w ( x i − x j ) + v ( x i ) i =1 1 � i < j � N i =1 � R d ( N − 1) | Ψ | 2 ( x , x 2 , . . . , x N ) d x 1 · · · d x N ρ Ψ ( x ) := N Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  3. Hohenberg-Kohn theorem N N � � � H N ( v ) := − ∆ i + w ( x i − x j ) + v ( x i ) i =1 1 � i < j � N i =1 � R d ( N − 1) | Ψ | 2 ( x , x 2 , . . . , x N ) d x 1 · · · d x N ρ Ψ ( x ) := N Theorem (Hohenberg-Kohn) Let w , v 1 , v 2 ∈ ? . If there are two ground states Ψ 1 and Ψ 2 of H N ( v 1 ) and H N ( v 2 ) , such that ρ Ψ 1 = ρ Ψ 2 , then v 1 = v 2 + E 1 − E 2 . N Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  4. Hohenberg-Kohn theorem N N � � � H N ( v ) := − ∆ i + w ( x i − x j ) + v ( x i ) i =1 1 � i < j � N i =1 � R d ( N − 1) | Ψ | 2 ( x , x 2 , . . . , x N ) d x 1 · · · d x N ρ Ψ ( x ) := N Theorem (Hohenberg-Kohn) Let w , v 1 , v 2 ∈ ? . If there are two ground states Ψ 1 and Ψ 2 of H N ( v 1 ) and H N ( v 2 ) , such that � R d ( v 1 − v 2 )( ρ Ψ 1 − ρ Ψ 2 ) = 0 , then v 1 = v 2 + E 1 − E 2 . N Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  5. Hohenberg-Kohn theorem N N � � � H N ( v ) := − ∆ i + w ( x i − x j ) + v ( x i ) i =1 1 � i < j � N i =1 � R d ( N − 1) | Ψ | 2 ( x , x 2 , . . . , x N ) d x 1 · · · d x N ρ Ψ ( x ) := N Theorem (Hohenberg-Kohn) Let w , v 1 , v 2 ∈ ? . If there are two ground states Ψ 1 and Ψ 2 of H N ( v 1 ) and H N ( v 2 ) , such that � R d ( v 1 − v 2 )( ρ Ψ 1 − ρ Ψ 2 ) = 0 , then v 1 = v 2 + E 1 − E 2 . N Works for bosons and fermions, in any dimension d . Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  6. Hohenberg-Kohn theorem N N � � � H N ( v ) := − ∆ i + w ( x i − x j ) + v ( x i ) i =1 1 � i < j � N i =1 � R d ( N − 1) | Ψ | 2 ( x , x 2 , . . . , x N ) d x 1 · · · d x N ρ Ψ ( x ) := N Theorem (Hohenberg-Kohn) Let w , v 1 , v 2 ∈ ? . If there are two ground states Ψ 1 and Ψ 2 of H N ( v 1 ) and H N ( v 2 ) , such that � R d ( v 1 − v 2 )( ρ Ψ 1 − ρ Ψ 2 ) = 0 , then v 1 = v 2 + E 1 − E 2 . N Works for bosons and fermions, in any dimension d . Lieb remarked this relies on a strong unique continuation d 2 ( R d ) + L ∞ ( R d ) property (1983). He conjectured ? = L Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  7. Hohenberg-Kohn theorem N N � � � H N ( v ) := − ∆ i + w ( x i − x j ) + v ( x i ) i =1 1 � i < j � N i =1 � R d ( N − 1) | Ψ | 2 ( x , x 2 , . . . , x N ) d x 1 · · · d x N ρ Ψ ( x ) := N Theorem (Hohenberg-Kohn) Let w , v 1 , v 2 ∈ ? . If there are two ground states Ψ 1 and Ψ 2 of H N ( v 1 ) and H N ( v 2 ) , such that � R d ( v 1 − v 2 )( ρ Ψ 1 − ρ Ψ 2 ) = 0 , then v 1 = v 2 + E 1 − E 2 . N Works for bosons and fermions, in any dimension d . Lieb remarked this relies on a strong unique continuation d 2 ( R d ) + L ∞ ( R d ) property (1983). He conjectured ? = L d N 2 ( R d ) + L ∞ ( R d ) by Jerison-Kenig (1985) We can take ? = L Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  8. Proof of the Hohenberg-Kohn theorem � �� N � � � Ψ , i =1 v ( x i ) Ψ = R d v ρ Ψ 1 Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  9. Proof of the Hohenberg-Kohn theorem � �� N � � � Ψ , i =1 v ( x i ) Ψ = R d v ρ Ψ 1 2 E 1 � � Ψ 2 , H N ( v 1 )Ψ 2 � � = E 2 + R d ρ Ψ 2 ( v 1 − v 2 ) Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  10. Proof of the Hohenberg-Kohn theorem � �� N � � � Ψ , i =1 v ( x i ) Ψ = R d v ρ Ψ 1 2 E 1 � � Ψ 2 , H N ( v 1 )Ψ 2 � � = E 2 + R d ρ Ψ 2 ( v 1 − v 2 ) 3 Exchanging 1 ↔ 2 gives E 1 − E 2 � � R d ρ Ψ 1 ( v 1 − v 2 ) Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  11. Proof of the Hohenberg-Kohn theorem � �� N � � � Ψ , i =1 v ( x i ) Ψ = R d v ρ Ψ 1 2 E 1 � � Ψ 2 , H N ( v 1 )Ψ 2 � � = E 2 + R d ρ Ψ 2 ( v 1 − v 2 ) 3 Exchanging 1 ↔ 2 gives E 1 − E 2 � � R d ρ Ψ 1 ( v 1 − v 2 ) 4 Using � R d ( v 1 − v 2 )( ρ Ψ 1 − ρ Ψ 2 ) = 0, the � ’s above are =, Ψ 2 , H N ( v 1 )Ψ 2 � � hence = E 1 , that is Ψ 2 is a ground state for H N ( v 1 ), so H N ( v 1 )Ψ 2 = E 1 Ψ 2 Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  12. Proof of the Hohenberg-Kohn theorem � �� N � � � Ψ , i =1 v ( x i ) Ψ = R d v ρ Ψ 1 2 E 1 � � Ψ 2 , H N ( v 1 )Ψ 2 � � = E 2 + R d ρ Ψ 2 ( v 1 − v 2 ) 3 Exchanging 1 ↔ 2 gives E 1 − E 2 � � R d ρ Ψ 1 ( v 1 − v 2 ) 4 Using � R d ( v 1 − v 2 )( ρ Ψ 1 − ρ Ψ 2 ) = 0, the � ’s above are =, Ψ 2 , H N ( v 1 )Ψ 2 � � hence = E 1 , that is Ψ 2 is a ground state for H N ( v 1 ), so H N ( v 1 )Ψ 2 = E 1 Ψ 2 5 Substracting it with H N ( v 2 )Ψ 2 = E 2 Ψ 2 , we get � N � � E 1 − E 2 + ( v 2 − v 1 )( x i ) Ψ 2 = 0 i =1 Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  13. Proof of the Hohenberg-Kohn theorem � �� N � � � Ψ , i =1 v ( x i ) Ψ = R d v ρ Ψ 1 2 E 1 � � Ψ 2 , H N ( v 1 )Ψ 2 � � = E 2 + R d ρ Ψ 2 ( v 1 − v 2 ) 3 Exchanging 1 ↔ 2 gives E 1 − E 2 � � R d ρ Ψ 1 ( v 1 − v 2 ) 4 Using � R d ( v 1 − v 2 )( ρ Ψ 1 − ρ Ψ 2 ) = 0, the � ’s above are =, Ψ 2 , H N ( v 1 )Ψ 2 � � hence = E 1 , that is Ψ 2 is a ground state for H N ( v 1 ), so H N ( v 1 )Ψ 2 = E 1 Ψ 2 5 Substracting it with H N ( v 2 )Ψ 2 = E 2 Ψ 2 , we get � N � � E 1 − E 2 + ( v 2 − v 1 )( x i ) Ψ 2 = 0 i =1 6 By strong unique continuation, |{ Ψ 2 ( X ) = 0 }| = 0, thus E 1 − E 2 + � N i =1 ( v 2 − v 1 )( x i ) = 0 and integrating on [0 , L ] d ( N − 1) , we obtain v 1 = v 2 + ( E 1 − E 2 ) / N Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  14. Strong UCP Theorem (Strong UCP for many-body Schr¨ odinger operators) Assume that the potentials satisfy v , w ∈ L p loc ( R d ) with p > max (2 d / 3 , 2) . If Ψ ∈ H 2 loc ( R dN ) is a non zero solution to H N ( v )Ψ = E Ψ , then |{ Ψ( X ) = 0 }| = 0 . L. Garrigue , Unique continuation for many-body Schr¨ odinger operators and the Hohenberg-Kohn theorem , • Math. Phys. Anal. Geom., 21 (2018), p. 27. L. Garrigue , Unique continuation for many-body Schr¨ odinger operators and the Hohenberg-Kohn theorem. • II. The Pauli Hamiltonian , (2019), arXiv:1901.03207. Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  15. Strong UCP Theorem (Strong UCP for many-body Schr¨ odinger operators) Assume that the potentials satisfy v , w ∈ L p loc ( R d ) with p > max (2 d / 3 , 2) . If Ψ ∈ H 2 loc ( R dN ) is a non zero solution to H N ( v )Ψ = E Ψ , then |{ Ψ( X ) = 0 }| = 0 . In 3 D , we can take ? = L p > 2 ( R 3 ) + L ∞ ( R 3 ). Covers Coulomb-like singularities L. Garrigue , Unique continuation for many-body Schr¨ odinger operators and the Hohenberg-Kohn theorem , • Math. Phys. Anal. Geom., 21 (2018), p. 27. L. Garrigue , Unique continuation for many-body Schr¨ odinger operators and the Hohenberg-Kohn theorem. • II. The Pauli Hamiltonian , (2019), arXiv:1901.03207. Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  16. Strong UCP Theorem (Strong UCP for many-body Schr¨ odinger operators) Assume that the potentials satisfy v , w ∈ L p loc ( R d ) with p > max (2 d / 3 , 2) . If Ψ ∈ H 2 loc ( R dN ) is a non zero solution to H N ( v )Ψ = E Ψ , then |{ Ψ( X ) = 0 }| = 0 . In 3 D , we can take ? = L p > 2 ( R 3 ) + L ∞ ( R 3 ). Covers Coulomb-like singularities Works for excited states L. Garrigue , Unique continuation for many-body Schr¨ odinger operators and the Hohenberg-Kohn theorem , • Math. Phys. Anal. Geom., 21 (2018), p. 27. L. Garrigue , Unique continuation for many-body Schr¨ odinger operators and the Hohenberg-Kohn theorem. • II. The Pauli Hamiltonian , (2019), arXiv:1901.03207. Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  17. Magnetic case, the Pauli Hamiltonian N � ( σ j · ( − i ∇ j + A ( x j ))) 2 + v ( x j ) � H N ( v , A ) := � � + w ( x i − x j ) j =1 1 � i < j � N Theorem (Strong UCP for the many-body Pauli operator) Assume that the potentials satisfy div A = 0 and A ∈ L q loc ( R d ) with q > 2 d , curl A , v , w ∈ L p loc ( R d ) with p > max (2 d / 3 , 2) . If Ψ ∈ H 2 loc ( R dN ) is a non zero solution to H N ( v , A )Ψ = E Ψ , then |{ Ψ( X ) = 0 }| = 0 . Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

  18. History of related UCP results Weak Number of Hypothesis Date Magnetic ? or Strong particles on v (loc) L ∞ Carleman 39 W 1 (and N ) No L 2 d / 3 H¨ ormander 63 W 1 No L 2 d / 3 Georgescu 80 W N No L d Schechter-Simon 80 W No N L d / 2 Jerison-Kenig 85 S 1 No Kurata 97 S 1 Many Yes L d / 2 Koch-Tataru 01 S 1 Yes 18 S N Many Yes Laestadius-Benedicks-Penz L p > 2 d / 3 Garrigue 19 S N Yes Louis Garrigue Unique continuation and new Hohenberg-Kohn theorems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend