a universal differential equation
play

A universal differential equation Olivier Bournez, Amaury Pouly 21 - PowerPoint PPT Presentation

A universal differential equation Olivier Bournez, Amaury Pouly 21 mars 2017 1 / 14 Digital vs analog computers 2 / 14 Digital vs analog computers VS 2 / 14 Church Thesis Computability logic boolean circuits discrete recursive Turing


  1. A universal differential equation Olivier Bournez, Amaury Pouly 21 mars 2017 1 / 14

  2. Digital vs analog computers 2 / 14

  3. Digital vs analog computers VS 2 / 14

  4. Church Thesis Computability logic boolean circuits discrete recursive Turing lambda functions machine calculus continuous quantum analog Church Thesis All reasonable models of computation are equivalent. 3 / 14

  5. Church Thesis Complexity logic boolean circuits discrete recursive Turing lambda functions machine calculus � ? ? continuous quantum analog Effective Church Thesis All reasonable models of computation are equivalent for complexity. 3 / 14

  6. Polynomial Differential Equations u × k uv k v u � + � u + v u u v General Purpose Analog Computer Differential Analyzer polynomial differential Newton mechanics equations : � y ( 0 )= y 0 y ′ ( t )= p ( y ( t )) Reaction networks : chemical Rich class enzymatic Stable (+, × , ◦ ,/,ED) No closed-form solution 4 / 14

  7. Example of dynamical system y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 θ + g ¨ ℓ sin( θ ) = 0  y ′ 1 = y 2  y 1 = θ   2 = − g y 2 = ˙   y ′ l y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ )     y ′ 4 = − y 2 y 3 y 4 = cos( θ )   5 / 14

  8. Computing with the GPAC Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion 6 / 14

  9. Computing with the GPAC Generable functions � y ( 0 )= y 0 x ∈ R y ′ ( x )= p ( y ( x )) f ( x ) = y 1 ( x ) y 1 ( x ) x Shannon’s notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 6 / 14

  10. Computing with the GPAC Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... Strictly weaker than Turing machines [Shannon, 1941] 6 / 14

  11. Computing with the GPAC Generable functions Computable � y ( 0 )= y 0 � y ( 0 )= q ( x ) x ∈ R x ∈ R y ′ ( x )= p ( y ( x )) y ′ ( t )= p ( y ( t )) t ∈ R + f ( x ) = y 1 ( x ) f ( x ) = lim t →∞ y 1 ( t ) y 1 ( x ) y 1 ( t ) x f ( x ) x t Shannon’s notion Modern notion sin , cos , exp , log , ... sin , cos , exp , log , Γ , ζ, ... Strictly weaker than Turing Turing powerful machines [Shannon, 1941] [Bournez et al., 2007] 6 / 14

  12. Universal differential equations Computable functions Generable functions y 1 ( t ) f ( x ) y 1 ( x ) x x t subclass of analytic functions any computable function 7 / 14

  13. Universal differential equations Computable functions Generable functions y 1 ( t ) f ( x ) y 1 ( x ) x x t subclass of analytic functions any computable function y 1 ( x ) x 7 / 14

  14. Universal differential equation (Rubel) y 1 ( x ) x Theorem (Rubel) There exists a fixed polynomial p and k ∈ N such that for any conti- nuous functions f and ε , there exists a solution y to p ( y , y ′ , . . . , y ( k ) ) = 0 such that | y ( t ) − f ( t ) | � ε ( t ) . 8 / 14

  15. Universal differential equation (Rubel) y 1 ( x ) x Theorem (Rubel) There exists a fixed polynomial p and k ∈ N such that for any conti- nuous functions f and ε , there exists a solution y to ′′′′ + 6 y ′ 3 y ′′′′ + 24 y ′ 2 y ′′′′ 2 ′′′ 2 y ′′ 2 y ′′ 4 y 3 y ′ 4 y − 4 y ′ 4 y ′′ y ′′′ y ′′′′ ′′′ 3 − 29 y ′ 2 y ′′′ 2 + 12 y ′′ 3 y ′′ 7 − 12 y ′ 3 y ′′ y = 0 such that | y ( t ) − f ( t ) | � ε ( t ) . Problem : Rubel is «cheating». 8 / 14

  16. Rubel’s proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise Take f ( t ) = e ( 1 − t 2 ) 2 f ′′ ( t ) + 2 tf ′ ( t ) = 0 . t 9 / 14

  17. Rubel’s proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise Take f ( t ) = e ( 1 − t 2 ) 2 f ′′ ( t ) + 2 tf ′ ( t ) = 0 . Can do the same with cf ( at + b ) (translation+scaling) t 9 / 14

  18. Rubel’s proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise Take f ( t ) = e ( 1 − t 2 ) 2 f ′′ ( t ) + 2 tf ′ ( t ) = 0 . Can do the same with cf ( at + b ) (translation+scaling) Can glue together arbitrary many such pieces t 9 / 14

  19. Rubel’s proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise Take f ( t ) = e ( 1 − t 2 ) 2 f ′′ ( t ) + 2 tf ′ ( t ) = 0 . Can do the same with cf ( at + b ) (translation+scaling) Can glue together arbitrary many such pieces � Can arrange so that f is solution : piecewise pseudo-linear t 9 / 14

  20. Rubel’s proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise Take f ( t ) = e ( 1 − t 2 ) 2 f ′′ ( t ) + 2 tf ′ ( t ) = 0 . Can do the same with cf ( at + b ) (translation+scaling) Can glue together arbitrary many such pieces � Can arrange so that f is solution : piecewise pseudo-linear t Conclusion : Rubel’s equation allows any piecewise pseudo-linear functions, and those are dense in C 0 9 / 14

  21. Why I don’t like Rubel’s result the solution y is not unique, even with added initial conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k 10 / 14

  22. Why I don’t like Rubel’s result the solution y is not unique, even with added initial conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k ...even with a countable number of extra conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( d i ) ( a i ) = b i , i ∈ N In fact, this is fundamental for the proof to work! 10 / 14

  23. Why I don’t like Rubel’s result the solution y is not unique, even with added initial conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k ...even with a countable number of extra conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( d i ) ( a i ) = b i , i ∈ N In fact, this is fundamental for the proof to work! Rubel’s interpretation : this equation is universal My interpretation : this equation allows almost anything 10 / 14

  24. Universal differential equation (PIVP) y 1 ( x ) x Theorem There exists a fixed polynomial p and d ∈ N such that for any conti- nuous functions f and ε , there exists α ∈ R d such that y ′ ( t ) = p ( y ( t )) y ( 0 ) = α, has a unique solution and this solution satisfies such that | y ( t ) − f ( t ) | � ε ( t ) . 11 / 14

  25. Universal differential equation (DAE) y 1 ( x ) x Theorem There exists a fixed polynomial p and k ∈ N such that for any conti- nuous functions f and ε , there exists α 0 , . . . , α k ∈ R such that p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k has a unique analytic solution and this solution satisfies such that | y ( t ) − f ( t ) | � ε ( t ) . 12 / 14

  26. Vague proof idea Key ingredients : fast-growing function (analog) bit generator → On the white board. 13 / 14

  27. A new notion of computability Almost-Theorem f : [ 0 , 1 ] → R is computable if and only if there exists τ > 1, y 0 ∈ R d and p polynomial such that y ′ ( 0 ) = y 0 , y ′ ( t ) = p ( y ( t )) satisfies | f ( x ) − y ( x + n τ ) | � 2 − n , ∀ x ∈ [ 0 , 1 ] , ∀ n ∈ N y ( t ) f ( t mod τ ) t τ 0 1 τ + 1 2 τ 2 τ + 1 3 τ 14 / 14

  28. Conclusion Rubel’s universal differential is very weak We provide a stronger result Another notion of analog computability 15 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend