a truly universal ordinary differential equation
play

A truly universal ordinary differential equation Amaury Pouly 1 Joint - PowerPoint PPT Presentation

A truly universal ordinary differential equation Amaury Pouly 1 Joint work with Olivier Bournez 2 1 Max Planck Institute for Software Systems, Germany 2 LIX, cole Polytechnique, France 11 May 2018 1 / 20 Universal differential algebraic


  1. A truly universal ordinary differential equation Amaury Pouly 1 Joint work with Olivier Bournez 2 1 Max Planck Institute for Software Systems, Germany 2 LIX, École Polytechnique, France 11 May 2018 1 / 20

  2. Universal differential algebraic equation (Rubel) y 1 ( x ) x Theorem (Rubel, 1981) For any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists a solution y : R → R to ′′′′ + 6 y ′ 3 y ′′′′ + 24 y ′ 2 y ′′′′ 2 ′′′ 2 y ′′ 2 y ′′ 4 y 3 y ′ 4 y − 4 y ′ 4 y ′′ y ′′′ y ′′′′ ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 − 12 y ′ 3 y = 0 ′′ y such that ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 2 / 20

  3. Universal differential algebraic equation (Rubel) y 1 ( x ) x Theorem (Rubel, 1981) There exists a fixed k and nontrivial polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists a solution y : R → R to p ( y , y ′ , . . . , y ( k ) ) = 0 such that ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 2 / 20

  4. Universal differential algebraic equation (Rubel) Open Problem Can we have unicity of y 1 ( x ) x the solution with initial conditions? Theorem (Rubel, 1981) There exists a fixed k and nontrivial polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists a solution y : R → R to p ( y , y ′ , . . . , y ( k ) ) = 0 such that ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 2 / 20

  5. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . t 3 / 20

  6. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′ − 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 t 3 / 20

  7. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′− 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 Can glue together arbitrary many such pieces � crucial (and tricky) part of the proof t 3 / 20

  8. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′− 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 Can glue together arbitrary many such pieces � crucial (and tricky) part of the proof Can arrange so that f is solution : piecewise pseudo-linear � t 3 / 20

  9. Rubel’s ("disappointing") proof in one slide − 1 1 − t 2 for − 1 < t < 1 and f ( t ) = 0 otherwise. Take f ( t ) = e ( 1 − t 2 ) 2 f It satisfies ′ ( t ) + 2 tf ( t ) = 0 . For any a , b , c ∈ R , y ( t ) = cf ( at + b ) satisfies 3 y ′ 4 y ′′ y ′′′′ 2 − 4 y ′ 4 y ′′ 2 y ′′′′ + 6 y ′ 3 y ′′ 2 y ′′′ y ′′′′ + 24 y ′ 2 y ′′ 4 y ′′′′− 12 y ′ 3 y ′′ y ′′′ 3 − 29 y ′ 2 y ′′ 3 y ′′′ 2 + 12 y ′′ 7 = 0 Can glue together arbitrary many such pieces � crucial (and tricky) part of the proof Can arrange so that f is solution : piecewise pseudo-linear � t Conclusion : Rubel’s equation allows any piecewise pseudo-linear functions, and those are dense in C 0 3 / 20

  10. The problem with Rubel’s DAE The solution y is not unique, even with added initial conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k In fact, this is fundamental for Rubel’s proof to work! 4 / 20

  11. The problem with Rubel’s DAE The solution y is not unique, even with added initial conditions : p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k In fact, this is fundamental for Rubel’s proof to work! Rubel’s statement : this DAE is universal More realistic interpretation : this DAE allows almost anything Open Problem (Rubel, 1981) Is there a universal ODE y ′ = p ( y ) ? Note : explicit polynomial ODE ⇒ unique solution 4 / 20

  12. Universal explicit ordinary differential equation y 1 ( x ) x Main result There exists a fixed (vector of) polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α ∈ R d such that y ( 0 ) = α, y ′ ( t ) = p ( y ( t )) has a unique solution y : R → R d and ∀ t ∈ R , | y 1 ( t ) − f ( t ) | � ε ( t ) . 5 / 20

  13. Universal explicit ordinary differential equation Notes : system of ODEs, y 1 ( x ) x y must be analytic, we need d ≈ 300. Main result There exists a fixed (vector of) polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α ∈ R d such that y ( 0 ) = α, y ′ ( t ) = p ( y ( t )) has a unique solution y : R → R d and ∀ t ∈ R , | y 1 ( t ) − f ( t ) | � ε ( t ) . 5 / 20

  14. Universal explicit ordinary differential equation Notes : system of ODEs, y 1 ( x ) x y must be analytic, we need d ≈ 300. Main result There exists a fixed (vector of) polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α ∈ R d such that y ( 0 ) = α, y ′ ( t ) = p ( y ( t )) has a unique solution y : R → R d and ∀ t ∈ R , | y 1 ( t ) − f ( t ) | � ε ( t ) . Futhermore, α is computable † from f and ε . † . This statement can be made precise with the theory of Computable Analysis. 5 / 20

  15. Universal DAE, again but better y 1 ( x ) x Corollary of main result There exists a fixed k and nontrivial polynomial p such that for any f ∈ C 0 ( R ) and ε ∈ C 0 ( R , R > 0 ) , there exists α 0 , . . . , α k ∈ R such that p ( y , y ′ , . . . , y ( k ) ) = 0 , y ( 0 ) = α 0 , y ′ ( 0 ) = α 1 , . . . , y ( k ) ( 0 ) = α k has a unique analytic solution y : R → R and ∀ t ∈ R , | y ( t ) − f ( t ) | � ε ( t ) . 6 / 20

  16. Some motivation Polynomial ODEs correspond to analog computers : Differential Analyser British Navy mecanical computer 7 / 20

  17. Some motivation Polynomial ODEs correspond to analog computers : Differential Analyser British Navy mecanical computer They are equivalent to Turing machines! One can characterize P with pODEs (ICALP 2016) Take away : polynomial ODEs are a natural programming language. 7 / 20

  18. Example of differential equation y 2 � � y 1 × ℓ y 3 y 4 − g � × ℓ θ m � × × − 1 General Purpose Analog Computer (GPAC) Shannon’s model of the Differential Analyser θ + g ¨ ℓ sin( θ ) = 0  y ′  1 = y 2 y 1 = θ   2 = − g y 2 = ˙  y ′  ℓ y 3 θ   ⇔ y ′ 3 = y 2 y 4 y 3 = sin( θ )     y ′ 4 = − y 2 y 3 y 4 = cos( θ )   8 / 20

  19. A brief stop Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs. 9 / 20

  20. Generable functions (total, univariate) Types Definition f : R → R is generable if there exists d , p d ∈ N : dimension and y 0 such that the solution y to Q ⊆ K ⊆ R : field p ∈ K d [ R n ] : polynomial y ( 0 ) = y 0 , y ′ ( x ) = p ( y ( x )) vector (coef. in K ) satisfies f ( x ) = y 1 ( x ) for all x ∈ R . y 0 ∈ K d , y : R → R d y 1 ( x ) x Note : existence and unicity of y by Cauchy-Lipschitz theorem. 10 / 20

  21. Generable functions (total, univariate) Types Definition f : R → R is generable if there exists d , p d ∈ N : dimension and y 0 such that the solution y to Q ⊆ K ⊆ R : field p ∈ K d [ R n ] : polynomial y ( 0 ) = y 0 , y ′ ( x ) = p ( y ( x )) vector (coef. in K ) satisfies f ( x ) = y 1 ( x ) for all x ∈ R . y 0 ∈ K d , y : R → R d Example : f ( x ) = x ◮ identity y ′ = 1 y ( 0 ) = 0 , y ( x ) = x � 10 / 20

  22. Generable functions (total, univariate) Types Definition f : R → R is generable if there exists d , p d ∈ N : dimension and y 0 such that the solution y to Q ⊆ K ⊆ R : field p ∈ K d [ R n ] : polynomial y ( 0 ) = y 0 , y ′ ( x ) = p ( y ( x )) vector (coef. in K ) satisfies f ( x ) = y 1 ( x ) for all x ∈ R . y 0 ∈ K d , y : R → R d Example : f ( x ) = x 2 ◮ squaring y 1 ( x )= x 2 y 1 ( 0 )= 0 , y ′ 1 = 2 y 2 � y 2 ( 0 )= 0 , 2 = 1 y ′ y 2 ( x )= x � 10 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend