a q random walk approximated by a q brownian motion
play

A q -Random Walk Approximated by a q -Brownian Motion Malvina - PowerPoint PPT Presentation

Introduction Main Results Selected References A q -Random Walk Approximated by a q -Brownian Motion Malvina Vamvakari Department of Informatics and Telematics Harokopio University, Athens GASCom 2016, La Marana, Corsica Malvina Vamvakari A q


  1. Introduction Main Results Selected References A q -Random Walk Approximated by a q -Brownian Motion Malvina Vamvakari Department of Informatics and Telematics Harokopio University, Athens GASCom 2016, La Marana, Corsica Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  2. Introduction Main Results Selected References Table of contents 1 Introduction q -Series Preliminaries, 0 < q < 1 The q -Binomial and the q -Poisson Distributions 2 Main Results A q -Poisson Process Distributions of the Interarrival and Waiting Times Fitting Interarrival Times of Pageviews on Harokopio University’s Web to a q -Exponential Distribution A q -Random Walk 3 Selected References Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  3. Introduction Main Results Selected References Basic Definitions The q -shifted factorials are n � ( 1 − aq k − 1 ) , n = 1 , 2 , . . . , or ∞ ( a ; q ) 0 := 1 , ( a ; q ) n := k = 1 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  4. Introduction Main Results Selected References Basic Definitions The q -shifted factorials are n � ( 1 − aq k − 1 ) , n = 1 , 2 , . . . , or ∞ ( a ; q ) 0 := 1 , ( a ; q ) n := k = 1 The multiple q -shifted factorials are defined by k � ( a 1 , a 2 , . . . , a k ; q ) n := ( a j ; q ) n j = 1 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  5. Introduction Main Results Selected References Basic Definitions The q -shifted factorials are n � ( 1 − aq k − 1 ) , n = 1 , 2 , . . . , or ∞ ( a ; q ) 0 := 1 , ( a ; q ) n := k = 1 The multiple q -shifted factorials are defined by k � ( a 1 , a 2 , . . . , a k ; q ) n := ( a j ; q ) n j = 1 The q -binomial coefficient is � n � ( q ; q ) n := k ( q ; q ) k ( q ; q ) n − k q Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  6. Introduction Main Results Selected References Basic (or q − ) Hypergeometric Series for 0 < q < 1 r φ s ( a 1 , . . . , a r ; b 1 , . . . , b s ; q , z ) = ∞ ( a 1 , · · · , a r ; q ) n z n [( − 1 ) n q ( n 2 )] s − r + 1 � ( b 1 , · · · , b s ; q ) n ( q ; q ) n n = 0 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  7. Introduction Main Results Selected References q -Exponential functions Two kinds of q -exponential functions are the following ∞ ( 1 − q ) n z n 1 � e q ( z ) := = , | z | < 1 , ( q ; q ) n (( 1 − q ) z ; q ) ∞ n = 0 ∞ ( 1 − q ) n z n q n ( n − 1 ) / 2 = ( − ( 1 − q ) z ; q ) ∞ , � E q ( z ) := ( q ; q ) n n = 0 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  8. Introduction Main Results Selected References q -Exponential functions Two kinds of q -exponential functions are the following ∞ ( 1 − q ) n z n 1 � e q ( z ) := = , | z | < 1 , ( q ; q ) n (( 1 − q ) z ; q ) ∞ n = 0 ∞ ( 1 − q ) n z n q n ( n − 1 ) / 2 = ( − ( 1 − q ) z ; q ) ∞ , � E q ( z ) := ( q ; q ) n n = 0 The functions e q and E q satisfy e q ( z ) E q ( − z ) = 1 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  9. Introduction Main Results Selected References q -Differences, 0 < q < 1 A discrete analogue of the derivatives is the q -difference opera- tor ( D q f )( x ) = f ( x ) − f ( qx ) ( 1 − q ) x Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  10. Introduction Main Results Selected References q -Differences, 0 < q < 1 A discrete analogue of the derivatives is the q -difference opera- tor ( D q f )( x ) = f ( x ) − f ( qx ) ( 1 − q ) x It is clear that ( D q x n )( x ) = 1 − q n 1 − q x n − 1 = [ n ] q x n − 1 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  11. Introduction Main Results Selected References q -Differences, 0 < q < 1 A discrete analogue of the derivatives is the q -difference opera- tor ( D q f )( x ) = f ( x ) − f ( qx ) ( 1 − q ) x It is clear that ( D q x n )( x ) = 1 − q n 1 − q x n − 1 = [ n ] q x n − 1 For differentiable functions q → 1 ( D q f )( x ) = f ′ ( x ) lim Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  12. Introduction Main Results Selected References For finite a and b the q -integral is � a ∞ [ aq n − aq n + 1 ] f ( aq n ) , � f ( x ) d q x := 0 n = 0 � b � b � a f ( x ) d q x := f ( x ) d q x − f ( x ) d q a 0 0 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  13. Introduction Main Results Selected References For finite a and b the q -integral is � a ∞ [ aq n − aq n + 1 ] f ( aq n ) , � f ( x ) d q x := 0 n = 0 � b � b � a f ( x ) d q x := f ( x ) d q x − f ( x ) d q a 0 0 The q -intergal over [ 0 , ∞ ) uses the division points { q n : −∞ < n < ∞} and is � ∞ ∞ � q n f ( q n ) f ( x ) d q x := ( 1 − q ) 0 n = −∞ Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  14. Introduction Main Results Selected References Consider a sequence of q - Bernoulli trials with the odds of suc- cess at the i th trial, θ i = θ q i − 1 , i = 1 , 2 , . . . , 0 < q < 1 , 0 < θ < ∞ or with probability of success at the i th trial, θ q i − 1 p i = 1 + θ q i − 1 , i = 1 , 2 , . . . , 0 < q < 1 , 0 < θ < ∞ . Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  15. Introduction Main Results Selected References Consider a sequence of q - Bernoulli trials with the odds of suc- cess at the i th trial, θ i = θ q i − 1 , i = 1 , 2 , . . . , 0 < q < 1 , 0 < θ < ∞ or with probability of success at the i th trial, θ q i − 1 p i = 1 + θ q i − 1 , i = 1 , 2 , . . . , 0 < q < 1 , 0 < θ < ∞ . Then the probability function of the number X n of successes at n such trials is given by q ( x 2 ) θ x � n � f X n ( x ) = P ( X n = x ) = j = 1 ( 1 + θ q j − 1 ) , x = 0 , 1 , . . . , n , � n x q for θ > 0 , 0 < q < 1 (see Charalambides(2010)). Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  16. Introduction Main Results Selected References The mean value, say µ q , of the random variable Y = [ X n ] 1 / q is θ µ q = [ n ] q 1 + θ q n − 1 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  17. Introduction Main Results Selected References The mean value, say µ q , of the random variable Y = [ X n ] 1 / q is θ µ q = [ n ] q 1 + θ q n − 1 The variance, say σ 2 q , of the r.v. Y is θ 2 [ n ] q [ n − 1 ] q θ [ n ] q σ 2 = q ( 1 + θ q n − 1 )( 1 + θ q n − 2 ) + q ( 1 + θ q n − 1 ) θ 2 [ n ] 2 q − ( 1 + θ q n − 1 ) 2 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  18. Introduction Main Results Selected References The limit of the probability function of the q -binomial distribu- tion as the number of trials tends to infinity is the probability function of the q -Poisson (Heine) distribution n ( 1 + θ q j − 1 ) − 1 = e q ( − λ ) q ( x 2 ) λ x � n � q ( x 2 ) θ x � lim [ x ] q ! , x n →∞ q j = 1 x = 0 , 1 , 2 , . . . , λ = θ/ ( 1 − q ) , (1) for 0 < q < 1, 0 < λ < ∞ , where e q ( λ ) = � ∞ i = 1 ( 1 − λ ( 1 − q ) q i − 1 ) − 1 , a q -exponential function (see Charalambi- des(2010)). Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  19. Introduction Main Results Selected References Let the time interval ( 0 , t ] , t > 0 and a suitable partition by considering the geometrically decreasing with rate q time diffe- rences δ i ( n ) = ( n ) − 1 q q i − 1 t , i = 1 , 2 , . . . , n , n ≥ 1 . (2) Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  20. Introduction Main Results Selected References Let the time interval ( 0 , t ] , t > 0 and a suitable partition by considering the geometrically decreasing with rate q time diffe- rences δ i ( n ) = ( n ) − 1 q q i − 1 t , i = 1 , 2 , . . . , n , n ≥ 1 . (2) Let also a sequence of independent q -Bernoulli trials in the n mutual disjoint consecutive time subintervals of length δ i ( n ) , i = 1 , 2 , . . . , n , n ≥ 1 , with the odds of success arrival at the i th trial, θ i ( n ; t ) = θ ( n ) − 1 q q i − 1 t , i = 1 , 2 , . . . , n , 0 < q < 1 , 0 < θ < ∞ . Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  21. Introduction Main Results Selected References Then the probability of success (arrival) at the i th trial is θ ( n ) − 1 q q i − 1 t p i ( n ; t ) = q q i − 1 t , i = 1 , 2 , . . . , n , 0 < q < 1 , 0 < θ < ∞ 1 + θ ( n ) − 1 Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

  22. Introduction Main Results Selected References Then the probability of success (arrival) at the i th trial is θ ( n ) − 1 q q i − 1 t p i ( n ; t ) = q q i − 1 t , i = 1 , 2 , . . . , n , 0 < q < 1 , 0 < θ < ∞ 1 + θ ( n ) − 1 Also, by (1) the probability function of the number of arrivals X q , n during the time interval ( 0 , t ] is given by q ( x 2 ) θ x t x ( n ) − x � n � q P ( X q , n = x ) = q q i − 1 t ) , x = 0 , 1 , . . . , n , (3) � n j = 1 ( 1 + θ ( n ) − 1 x q for 0 < θ < ∞ , 0 < q < 1. Malvina Vamvakari A q -Random Walk Approximated by a q -Brownian Motion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend