spectral graph theory and clustering linear algebra

spectral graph theory and clustering linear algebra reminder Real - PowerPoint PPT Presentation

spectral graph theory and clustering linear algebra reminder Real symmetric matrices have real eigenvalues and eigenvectors. = 2 1 3 1 1 1 = 1 2 1 = 0 0 = (1) 0 3 1 2 1


  1. spectral graph theory and clustering

  2. linear algebra reminder Real symmetric matrices have real eigenvalues and eigenvectors. 𝐡 π‘—π‘˜ = 𝐡 π‘˜π‘— 2 βˆ’1 3 1 βˆ’1 βˆ’1 𝐡 = βˆ’1 βˆ’2 βˆ’1 = 0 0 = (βˆ’1) 0 3 βˆ’1 2 1 βˆ’1 1 eigenvalues: βˆ’2.2749 βˆ’1 5.2749 1 βˆ’1 1 eigenvectors: 7.2749 0 βˆ’0.2749 1 1 1

  3. heat flow

  4. heat flow

  5. a version in discrete time and space An undirected graph 𝐻 = (π‘Š, 𝐹) For now, assume that 𝐻 is 𝒆 -regular for some number 𝑒 .

  6. a version in discrete time and space Random walk matrix: An undirected graph 𝐻 = (π‘Š, 𝐹) 𝑋 is an π‘œ Γ— π‘œ real symmetric matrix. 𝑗𝑗 = 1 𝑋 2 π‘—π‘˜ = 1 𝑋 {𝑗, π‘˜ } an edge 2𝑒 𝑋 π‘—π‘˜ = 0 {𝑗, π‘˜ } not an edge π‘Š = 1, 2, … , π‘œ 𝑋𝑣 𝑗 = 1 2 𝑣 𝑗 + 1 1 𝑣 π‘˜ 2 𝑒 𝑣 = 𝑣 1 , 𝑣 2 , … , 𝑣 π‘œ ∈ ℝ π‘œ π‘˜βˆΆ 𝑗,π‘˜ ∈𝐹

  7. heat dispersion on a graph

  8. evolution of the random walk / heat flow 𝑣 = 𝑣 1 , 𝑣 2 , … , 𝑣 π‘œ eigenvalues/ eigenvectors of 𝑋 π‘œ π‘œ π‘œ 𝜈 1 𝑀 1 𝑋𝑣 = 𝑋 1,𝑗 𝑣 𝑗 , 𝑋 2,𝑗 𝑣 𝑗 , … , 𝑋 π‘œ,𝑗 𝑣 𝑗 𝑗=1 𝑗=1 𝑗=1 𝜈 2 𝑀 2 π‘œ π‘œ β‹― 𝑋 2 𝑣 = 𝑋 1,π‘˜ 𝑋 π‘˜,𝑗 𝑣 𝑗 , … , 𝑋 π‘œ,π‘˜ 𝑋 π‘˜,𝑗 𝑣 𝑗 𝑗,π‘˜=1 𝑗,π‘˜=1 𝜈 π‘œ 𝑀 π‘œ 𝑣 = 𝛽 1 𝑀 1 + 𝛽 2 𝑀 2 + β‹― + 𝛽 π‘œ 𝑀 π‘œ 𝜈 1 = 1 𝑋𝑣 = 𝜈 1 𝛽 1 𝑀 1 + 𝜈 2 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 𝛽 π‘œ 𝑀 π‘œ 𝑋 2 𝑣 = 𝜈 1 2 𝛽 1 𝑀 1 + 𝜈 2 2 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 2 𝛽 π‘œ 𝑀 π‘œ 1 π‘œ , … , 1 𝑀 1 = π‘œ 𝑙 𝛽 1 𝑀 1 + 𝜈 2 𝑙 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 𝑋 𝑙 𝑣 = 𝜈 1 𝑙 𝛽 π‘œ 𝑀 π‘œ

  9. evolution of the random walk / heat flow 𝑣 = 𝑣 1 , 𝑣 2 , … , 𝑣 π‘œ eigenvalues/ eigenvectors of 𝑋 π‘œ π‘œ π‘œ 𝜈 1 𝑀 1 𝑋𝑣 = 𝑋 1,𝑗 𝑣 𝑗 , 𝑋 2,𝑗 𝑣 𝑗 , … , 𝑋 π‘œ,𝑗 𝑣 𝑗 𝑗=1 𝑗=1 𝑗=1 𝜈 2 𝑀 2 π‘œ π‘œ β‹― 𝑋 2 𝑣 = 𝑋 1,π‘˜ 𝑋 π‘˜,𝑗 𝑣 𝑗 , … , 𝑋 π‘œ,π‘˜ 𝑋 π‘˜,𝑗 𝑣 𝑗 𝑗,π‘˜=1 𝑗,π‘˜=1 𝜈 π‘œ 𝑀 π‘œ 𝑣 = 𝛽 1 𝑀 1 + 𝛽 2 𝑀 2 + β‹― + 𝛽 π‘œ 𝑀 π‘œ 𝜈 1 = 1 𝑋𝑣 = 𝜈 1 𝛽 1 𝑀 1 + 𝜈 2 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 𝛽 π‘œ 𝑀 π‘œ 𝑋 2 𝑣 = 𝜈 1 2 𝛽 1 𝑀 1 + 𝜈 2 2 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 2 𝛽 π‘œ 𝑀 π‘œ 1 π‘œ , … , 1 𝑀 1 = π‘œ 𝑙 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 𝑋 𝑙 𝑣 = 𝑙 𝛽 π‘œ 𝑀 π‘œ 𝛽 1 𝑀 1 + 𝜈 2

  10. evolution of the random walk / heat flow 𝑣 = 𝑣 1 , 𝑣 2 , … , 𝑣 π‘œ eigenvalues/ eigenvectors of 𝑋 π‘œ π‘œ π‘œ 𝜈 1 𝑀 1 𝑋𝑣 = 𝑋 1,𝑗 𝑣 𝑗 , 𝑋 2,𝑗 𝑣 𝑗 , … , 𝑋 π‘œ,𝑗 𝑣 𝑗 𝑗=1 𝑗=1 𝑗=1 𝜈 2 𝑀 2 π‘œ π‘œ β‹― 𝑋 2 𝑣 = 𝑋 1,π‘˜ 𝑋 π‘˜,𝑗 𝑣 𝑗 , … , 𝑋 π‘œ,π‘˜ 𝑋 π‘˜,𝑗 𝑣 𝑗 𝑗,π‘˜=1 𝑗,π‘˜=1 𝜈 π‘œ 𝑀 π‘œ 𝑣 = 𝛽 1 𝑀 1 + 𝛽 2 𝑀 2 + β‹― + 𝛽 π‘œ 𝑀 π‘œ 𝜈 1 = 1 𝑋𝑣 = 𝜈 1 𝛽 1 𝑀 1 + 𝜈 2 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 𝛽 π‘œ 𝑀 π‘œ 𝑋 2 𝑣 = 𝜈 1 2 𝛽 1 𝑀 1 + 𝜈 2 2 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 2 𝛽 π‘œ 𝑀 π‘œ 1 π‘œ , … , 1 𝑀 1 = π‘œ 𝑙 𝛽 2 𝑀 2 + β‹― + 𝜈 π‘œ 𝑋 𝑙 𝑣 = 𝑙 𝛽 π‘œ 𝑀 π‘œ 𝛽 1 𝑀 1 + 𝜈 2

  11. spectral embedding 𝑀 2

  12. bottlenecks 𝐻 = (π‘Š, 𝐹) Ξ¦ βˆ— 𝐻 = min Ξ¦ 𝑇 𝑇 β‰€π‘œ 2 𝑇 Ξ¦ 𝑇 = 𝐹 𝑇 𝑇

  13. PCA cannot find non-linear structure

  14. spectral partitioning can... [photo credit: Ma-Wu-Luo-Feng 2011]

  15. spectral partitioning can... [photo credit: Sidi, et. al. 2011]

Recommend


More recommend