spectral graph theory and clustering
linear algebra reminder Real symmetric matrices have real eigenvalues and eigenvectors. π΅ ππ = π΅ ππ 2 β1 3 1 β1 β1 π΅ = β1 β2 β1 = 0 0 = (β1) 0 3 β1 2 1 β1 1 eigenvalues: β2.2749 β1 5.2749 1 β1 1 eigenvectors: 7.2749 0 β0.2749 1 1 1
heat flow
heat flow
a version in discrete time and space An undirected graph π» = (π, πΉ) For now, assume that π» is π -regular for some number π .
a version in discrete time and space Random walk matrix: An undirected graph π» = (π, πΉ) π is an π Γ π real symmetric matrix. ππ = 1 π 2 ππ = 1 π {π, π } an edge 2π π ππ = 0 {π, π } not an edge π = 1, 2, β¦ , π ππ£ π = 1 2 π£ π + 1 1 π£ π 2 π π£ = π£ 1 , π£ 2 , β¦ , π£ π β β π πβΆ π,π βπΉ
heat dispersion on a graph
evolution of the random walk / heat flow π£ = π£ 1 , π£ 2 , β¦ , π£ π eigenvalues/ eigenvectors of π π π π π 1 π€ 1 ππ£ = π 1,π π£ π , π 2,π π£ π , β¦ , π π,π π£ π π=1 π=1 π=1 π 2 π€ 2 π π β― π 2 π£ = π 1,π π π,π π£ π , β¦ , π π,π π π,π π£ π π,π=1 π,π=1 π π π€ π π£ = π½ 1 π€ 1 + π½ 2 π€ 2 + β― + π½ π π€ π π 1 = 1 ππ£ = π 1 π½ 1 π€ 1 + π 2 π½ 2 π€ 2 + β― + π π π½ π π€ π π 2 π£ = π 1 2 π½ 1 π€ 1 + π 2 2 π½ 2 π€ 2 + β― + π π 2 π½ π π€ π 1 π , β¦ , 1 π€ 1 = π π π½ 1 π€ 1 + π 2 π π½ 2 π€ 2 + β― + π π π π π£ = π 1 π π½ π π€ π
evolution of the random walk / heat flow π£ = π£ 1 , π£ 2 , β¦ , π£ π eigenvalues/ eigenvectors of π π π π π 1 π€ 1 ππ£ = π 1,π π£ π , π 2,π π£ π , β¦ , π π,π π£ π π=1 π=1 π=1 π 2 π€ 2 π π β― π 2 π£ = π 1,π π π,π π£ π , β¦ , π π,π π π,π π£ π π,π=1 π,π=1 π π π€ π π£ = π½ 1 π€ 1 + π½ 2 π€ 2 + β― + π½ π π€ π π 1 = 1 ππ£ = π 1 π½ 1 π€ 1 + π 2 π½ 2 π€ 2 + β― + π π π½ π π€ π π 2 π£ = π 1 2 π½ 1 π€ 1 + π 2 2 π½ 2 π€ 2 + β― + π π 2 π½ π π€ π 1 π , β¦ , 1 π€ 1 = π π π½ 2 π€ 2 + β― + π π π π π£ = π π½ π π€ π π½ 1 π€ 1 + π 2
evolution of the random walk / heat flow π£ = π£ 1 , π£ 2 , β¦ , π£ π eigenvalues/ eigenvectors of π π π π π 1 π€ 1 ππ£ = π 1,π π£ π , π 2,π π£ π , β¦ , π π,π π£ π π=1 π=1 π=1 π 2 π€ 2 π π β― π 2 π£ = π 1,π π π,π π£ π , β¦ , π π,π π π,π π£ π π,π=1 π,π=1 π π π€ π π£ = π½ 1 π€ 1 + π½ 2 π€ 2 + β― + π½ π π€ π π 1 = 1 ππ£ = π 1 π½ 1 π€ 1 + π 2 π½ 2 π€ 2 + β― + π π π½ π π€ π π 2 π£ = π 1 2 π½ 1 π€ 1 + π 2 2 π½ 2 π€ 2 + β― + π π 2 π½ π π€ π 1 π , β¦ , 1 π€ 1 = π π π½ 2 π€ 2 + β― + π π π π π£ = π π½ π π€ π π½ 1 π€ 1 + π 2
spectral embedding π€ 2
bottlenecks π» = (π, πΉ) Ξ¦ β π» = min Ξ¦ π π β€π 2 π Ξ¦ π = πΉ π π
PCA cannot find non-linear structure
spectral partitioning can... [photo credit: Ma-Wu-Luo-Feng 2011]
spectral partitioning can... [photo credit: Sidi, et. al. 2011]
Recommend
More recommend