a flavor of nanomagnetism and spintronics 2
play

A flavor of Nanomagnetism and Spintronics (2) Olivier Fruchart - PowerPoint PPT Presentation

A flavor of Nanomagnetism and Spintronics (2) Olivier Fruchart Institut Nel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Nel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/


  1. A flavor of Nanomagnetism and Spintronics (2) Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  2. → SPINTRONICS ToC 1. Magnetoresistance 2. Spin transfer for magnetization switching 3. Spin transfer for domain wall motion 4. Other simuli : electric field, light, temperature etc. Olivier Fruchart – Meeting – Place.Date – p.2 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  3. MAGNETORESISTANCE – Giant magnetoresistance Principle of GMR Discovery: 1988, groups of A. Fert (CNRS-Thalès) and P. Grünberg (Jülich) Two-current model E Ferro2 Metal Fermi level d Ferro1 d s s Features ∆ R ∝ cos( θ ) Geometry: multilayers Magnitude: ≤ 40-50% Applications • Magnetic sensors: compass, read heads • Magnetic memory direct reading Olivier Fruchart – Meeting – Place.Date – p.3 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  4. MAGNETORESISTANCE – Tunneling magnetoresistance Principle of TMR Discovery: 1975 (Jullière); ‘rehabilitated’ 1995, Moodera et coll. • Electron tunnelling between electrodes Ferro2 Insulator w Ferro1 E E E 0 eV Fermi level d d • Classical machanics: no current s s • Quantum mechanics: tunneling current Schrödinger’s equation: 2 2 d  − ψ + ψ = ψ V ( x ) E 2 2 m dx Olivier Fruchart – Meeting – Place.Date – p.4 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  5. MAGNETORESISTANCE – Tunneling magnetoresistance Beyond Jullière's model Features Spin filtering in textured Mg(001) ∆ R ∝ cos( θ ) Geometry: multilayers Magnitude: up to 400% at RT High resistance Ultrathin oxyde layer Applications • Direct reading of memory cells • Magnetic field sensors • Reprogrammable magnetic logic S. Yuasa et al., Appl. Phys. Lett. 89, 042506 (2006) Olivier Fruchart – Meeting – Place.Date – p.5 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  6. MAGNETORESISTANCE – Evolution in HDD heads Olivier Fruchart – Meeting – Place.Date – p.6 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  7. → SPINTRONICS ToC 1. Magnetoresistance 2. Spin transfer for magnetization switching 3. Spin transfer for domain wall motion 4. Other simuli : electric field, light, temperature etc. Olivier Fruchart – Meeting – Place.Date – p.7 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  8. SPIN TRANSFER – Switching Spin transfer effect Can be viewed as 'Polarizer' 'Free layer' the GMR-reversed effect J. C. Slonczewski (1996) L. Berger (1996) Electron flow – Carrying magnetic moment u =( P g μ B / 2 e M S ) j Example Motivations Myers & Ralph, Cornell (2000)  Simplified architectures for Field writting bits (MRAMs etc.) switching  Fully electronic read/write  Devices with domain wall motion (memory, logic)  Devices for GHz oscillators Current switching Olivier Fruchart – Meeting – Place.Date – p.8 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  9. SPIN TRANSFER – Switching Physics : torques and precession m =γ 0 ( H + b I m p )× m +α m × ˙ ˙ m −γ a I m ×[ m × m p ] Field-like Spin-transfer (preserves energy) (brings or removes energy) u =( P g μ B / 2 e M S ) j a and b depend on Switching and oscillators S. I. Kiselev, Nature 425, 380 (2003) Olivier Fruchart – Meeting – Place.Date – p.9 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  10. → SPINTRONICS ToC 1. Magnetoresistance 2. Spin transfer for magnetization switching 3. Spin transfer for domain wall motion 4. Other simuli : electric field, light, temperature etc. Olivier Fruchart – Meeting – Place.Date – p.10 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  11. SPIN TRANSFER – Domain wall motion – Motivation Magnetic logic with domain walls Magnetic memories with domain walls (Field driven) (Current driven) D. A. Allwood et al., Science 309, 1688 (2005) Limitation: Requires homogeneous rotating field S. S. P. Parkin, IBM-Almaden U.S. patents 6834005, 6898132, 6920062  Makes use of spin transfer effect  Potentially 3D storage, however technologically challenging Olivier Fruchart – Meeting – Place.Date – p.11 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  12. SPIN TRANSFER – Domain wall motion – Precessional physics Modified Landau-Lifshitz equation Landau Lifshitz Gilbert equation + two “spin transfer torque” terms m =γ 0 H × m +α m × ˙ m −( u. ∇) m +β m ×[( u. ∇) m ] ˙ precession damping adiabatic non-adiabatic u =( P g μ B / 2 e M S ) j Flow of magnetic moment: Zhang and Li, PRL 93, 127204 (2004) Thiaville et al., EPL 69, 990 (2005) Tatara et al., JPSJ 75, 064708 (2006)  Fundamental physics: origin and magnitude of β unclear  Experimental determination of β necessary  Stripes and wires are different Olivier Fruchart – Meeting – Place.Date – p.12 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  13. SPIN TRANSFER – Domain wall motion – Reminder : what domain walls look like 2 μm 200nm Olivier Fruchart – Meeting – Place.Date – p.13 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  14. SPIN TRANSFER – Domain wall motion – Mobility Propagation in field Propagation in current A. Thiaville et al., Europhys. Lett. 69, 990 (2005) G. S. D. Beach et al., Nature. Mater. 4, 741 (2005) Olivier Fruchart – Meeting – Place.Date – p.14 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  15. SPIN TRANSFER – Domain wall motion – Rashba effect Measuring Au/Ti contact pad device Domain nucleation pad Pt(3nm) / Co(0.6nm) / AlOx(2nm) DWs prepared 500 nm 10 µm by field pulses Au/Ti contact pad Results Mean v 400  First, non-linear regime (DW creep) Linear fit DW velocity (m/s) 300  Second, linear regime (flow) 200  High DW mobility 100  Rashba-like effect for high β ? 0 0.0 1.0 2.0 3.0 4.0 5.0 T. A. Moore et al., Appl. Phys. Lett. 93, 262504 (2008) 12 A/m 2 ) Current density (x 10 M. Miron, Nature. Phys. 9, 230 (2010) Olivier Fruchart – Meeting – Place.Date – p.15 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  16. → SPINTRONICS ToC 1. Magnetoresistance 2. Spin transfer for magnetization switching 3. Spin transfer for domain wall motion 4. Other simuli : electric field, light, temperature etc. Olivier Fruchart – Meeting – Place.Date – p.16 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  17. OTHER STIMULI – Electrical field Electric modification of intrinsic properties M. Weisheit et al., Science 315, 349 (2007) See also: magnetic semiconductors, multiferroics etc. See follow-up : reversal with electric field : T. Nozaki et al., Appl. Phys. Lett. 96022506, (2010). M. Weiler et al., New J. Phys. 11, 013021 (2009) Olivier Fruchart – Meeting – Place.Date – p.17 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  18. OTHER STIMULI – Electrical field Principle Preliminary: one shot with large power Demagnetized Combined heating + inverse Faraday effect Magneto-optical material. Tc=500K Gd22Fe74.6Co3.4 Ti:S laser:  =800nm;  =40fs. Magnetization reversed Local reversal with controlled power C. D. Stanciu et al., Phys. Rev. Lett. 99, 047601 (2007) Olivier Fruchart – Meeting – Place.Date – p.18 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  19. OTHER STIMULI – Temperature Similar to thermoelectricity, however with spin-dependant chemical potential  Spin Seebeck coefficient  Generation of pure spin currents K. Uchida et al., Nature 455, 778 (2008) Olivier Fruchart – Meeting – Place.Date – p.19 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  20. Thank you and bye-bye ! Olivier Fruchart – Meeting – Place.Date – p.20 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend