extended color dynamics a top coloron model flavor
play

- Extended Color Dynamics - A Top-Coloron Model - Flavor - PowerPoint PPT Presentation

Flavor and Scalar Signals of an Extended Color Sector R. Sekhar Chivukula Michigan State University - Extended Color Dynamics - A Top-Coloron Model - Flavor Symmetries and Constraints - Scalars: Same Sign Top Signature - Flavor


  1. Flavor and Scalar Signals of an Extended Color Sector R. Sekhar Chivukula Michigan State University - Extended Color Dynamics - A Top-Coloron Model - Flavor Symmetries and Constraints - Scalars: Same Sign Top Signature - Flavor Independent Constraints - Conclusions KMI, Nagoya University March 5-7, 2014

  2. Extended Color Dynamics New colored gauge bosons Classic Axigluon : P.H. Frampton and S.L. Glashow, Phys. Lett. B 190, 157 (1987). Topgluon: C.T. Hill, Phys. Lett. B 266, 419 (1991). Flavor-universal Coloron: R.S. Chivukula, A.G. Cohen, & E.H. Simmons, Phys. Lett. B 380, 92 (1996). Chiral Color with g L ≠ g R : M.V. Martynov and A.D. Smirnov, Mod. Phys. Lett. A 24, 1897 (2009). New Axigluon: P.H. Frampton, J. Shu, and K. Wang, Phys. Lett. B 683, 294 (2010). Other color-octet states: (cf. “partial compositeness”) KK gluon : H. Davoudiasl, J.L. Hewett, and T.G. Rizzo, Phys. Rev. D63, 075004 (2001) B. Lillie, L. Randall, and L.-T. Wang, JHEP 0709, 074 (2007). Techni-rho : E. Farhi and L. Susskind, Physics Reports 74, 277 (1981). Recent catalog of colored states: Color sextets, colored scalars, low-scale scale string resonances... T. Han, I. Lewis, Z. Liu, JHEP 1012, 085 (2010).

  3. Gauge Sector

  4. Coloron Models: Gauge Sector u SU(3)1 SU(3)2 h1 h2 M 2 = u 2 ✓ h 2 ◆ − h 1 h 2 SU(3) 1 x SU(3) 2 color sector with 1 h 2 − h 1 h 2 4 2 unbroken subgroup: SU(3) 1+2 = SU(3) QCD g s g s h 2 = h 1 = cos θ sin θ G A µ = cos θ A A 1 µ + sin θ A A gluon state: 2 µ g S J µ G ≡ g S ( J µ 1 + J µ 2 ) couples to: u q C A µ = − sin θ A A 1 µ + cos θ A A h 2 1 + h 2 coloron state: M C = 2 2 µ √ 2 g S J µ C ≡ g S ( − J µ 1 tan θ + J µ couples to: 2 cot θ ) F F = − g 2 J µ S L 2 low-energy current-current interaction: C J C µ 2 M 2 C

  5. Fermions

  6. Coloron Models: Quark Charges g S J µ G ≡ g S ( J µ 1 + J µ u 2 ) SU(3)1 SU(3)2 g S J µ C ≡ g S ( − J µ 1 tan θ + J µ 2 cot θ ) h1 h2 F F = − g 2 low-energy current-current interaction: J µ S L 2 C J C µ 2 M 2 C Depending on how quarks transform under SU(3) 1 x SU(3) 2 the presence of colorons may impact • LHC dijet mass distribution (or angular distribution) • kinematic distributions of tt or bb final states • asymmetry in top-quark production: A tFB • FCNC processes: mixing, K ¯ K, D ¯ D, B ¯ B b → s γ • precision EW observables: delta-rho, R b

  7. Patterns of Quark Charges SU(3) 1 SU(3) 2 model pheno. (t,b) L q L t R ,b R q R coloron dijet q R (t,b) L q L t R ,b R t R ,b R (t,b) L q L q R q L (t,b) L t R ,b R q R q L t R ,b R (t,b) L q R new axigluon dijet, A tFB, FCNC dijet, tt, bb, q L q R (t,b) L t R ,b R topgluon FCNC, R b... t R ,b R q R (t,b) L q L classic axigluon dijet, A tFB q L t R ,b R q R (t,b) L (No spectators required) q = u,d,c,s

  8. A Flavorful Top-Coloron Model R.S.C., Elizabeth Simmons, N. Vignaroli PRD 87 (2013) 075002

  9. Flavorful Top-Coloron Model particle rticles SU(3) 1 SU(3) 2 SU(2) W (t,b) L 3 1 2 3rd generation 3rd generation quarks quarks t R ,b R 3 1 1 (u,d) L (c,s) L 1 3 2 light quarks light quarks u R ,d R c R ,s R 1 3 1 vector quarks Q L ,Q R 3 1 2 𝟀 light scalar 1 1 2 Φ heavy scalar 3 3* 1 Next to minimal flavor symmetry:

  10. Generational Mixing SU(3) 1 x SU(3) 2 x SU(2) W (1,1,2) (3, 3 * ,1) < Φ > < 𝟀 > X t R , b R Q L Q R (u,d) L (c,s) L (3,1,1) (3,1,2) (3,1,2) (1,3,2) Mixing to third generation occurs indirectly, through mixing with vector quarks. 1,2)

  11. Generational Mixing Light Generations { { { { { { Third Generation Vector Quarks Weak Mixing ⇒ Cabbibo Matrix, , and C d = O (1) α 1 = O ( λ 3 ) α 2 = O ( λ 2 ) 1,2)

  12. Constraints from Flavor Physics R.S.C., Elizabeth Simmons, N. Vignaroli PRD 87 (2013) 075002

  13. FCNC in Top-Coloron Model • Mixing among ordinary and heavy vector quarks also leads to flavor-changing b-quark decays: b → s γ • Coloron exchange yields KK, DD, and BB mixing ‣ quark charges under strong gauge groups are non-universal ‣ the top and bottom mass eigenstate quarks are admixtures of ordinary and heavy vector gauge eigenstate quarks

  14. Constraints: b → s Υ 0.004 0.002 ' D Re @ Λ b 0.000 Mixing with right- handed electroweak doublets - 0.002 enhances contributions to b → s γ - 0.004 - 0.4 - 0.2 0.0 0.2 0.4 ' D Re @ Λ t

  15. Constraints: B-Bbar Mixing b L b L s L s L b L s L C C C b L b L s L s L b L s L s L s L b L b L s L b L ( a ) ( b ) ( c ) Flavor-changing Effects from Coloron Exchange: interplay between mixing and coupling strengths

  16. Flavor Limits on Top-Coloron Model M C H TeV L Allowed...depends on α 2 5 Λ 2 4 KK mixing Λ 2 ë 2 may exclude 3 KK mixing Λ 2 ë 3 LHC dijets 2 may exclude exclude KK mixing certainly BB mixing and 1 excludes b → s γ exclude Θ 0 5 Cot Ω 1 2 3 4 R.S. Chivukula, EHS, N. Vignaroli (2013)

  17. Scalar Bosons R.S.C., Elizabeth Simmons, N. Vignaroli PRD 88 (2013) 034006 Bogdan Dobrescu and Yang Bai JHEP 1107 (2011) 100

  18. Colored Scalars and Their Potential _ Most general renormalizable (3,3) potential: For an appropriate range of parameters: vev singlet fields eaten by colorons { Color Octet Scalars Quark couplings fixed from above!

  19. Octet Scalar Production G H Double Production s @ fb D LHC - 14 LHC - 8 10 5 LHC - 7 Tevatron 10 4 1000 100 M GH H GeV L 10 200 400 600 800 1000

  20. Octet Scalar Decay Dijets: G H g g G H G H G H µ G H µ G H g g G H μ related to singlet pseudoscalar mass c L t R + ¯ t R c L : ¯

  21. Top + Charm Often Very Large! 4000 0.2 0.4 0.1 0.5 0.6 0.7 3500 0.3 0.8 3000 0.9 2500 M ∆ I H GeV L 2000 _ _ BR to t+c or c+t 1500 1000 pseudo-scalar 500 mass 200 400 600 800 1000 octet mass M GH H GeV L Octet pair production can lead to same-sign tops (dileptons)!

  22. Experimental Constraints 5000 H G H Æ gg L CMS di - jets 4000 ATLAS 3000 M ∆ I H GeV L 2000 H G H Æ tc L SSD + jets 1000 CMS 200 250 300 350 400 450 M GH H GeV L Singlet mass dependence from References: CMS PAS SUS-12-029 ATLAS arXiv:1210.4826 behavior of BRs CMS arXiv:1302.0531

  23. Flavor- Universal Constraints On Scalars R.S.C., Arsham Farzinnia, Jing Ren, and Elizabeth Simmons PRD 88 (2013) 075020 and in press

  24. Scalar Potential: Higgs and Mixing Scalar potential includes Higgs boson as well: ◆ 2 φ † φ − v 2 φ † φ − v 2 − v 2 ✓ ✓ ◆ ✓ ◆ V ( φ , Φ ) ⊂ λ h Φ † Φ s h h ⇥ ⇤ + λ m Tr 6 2 2 2 “Higgs portal” coupling: mixing between electroweak and color sectors h = cos χ h 0 − sin χ φ 0 R

  25. Precision Electroweak Constraints 0.00 S - T contour 3000 150 GeV at 95% C.L. sin c = 0.5 - 0.01 900 GeV sin c = 0.2 Excluded by S - T 2500 230 GeV at 95% C.L. 3000 GeV - 0.02 Excluded 2000 T region m s H GeV L - 0.03 450 GeV 1500 - 0.04 1000 - 0.05 0.00 0.01 0.02 0.03 0.04 0.05 S 500 h, φ R 0.0 0.2 0.4 0.6 0.8 1.0 sin Χ W ± , Z S-T contours from Gfitter, arXiv:1209.2716

  26. New States Contribute to Higgs Production! Spectator Colorons Scalars Fermions

  27. ATLAS Higgs Observation Moriond EW 2013, LP2013 ATLAS-CONF-2013-034,012,013

  28. CMS Higgs Observation Moriond EW 2013, LP2013 CMS-PAS-HIG-13-001,2 CMS-PAS-HIG-12-045

  29. Constraints from Higgs Observation Coloron and colored scalar contributions to production... h → φ I φ I allowed CMS-PAS-HIG-13-005 Note scale for v s ! ATLAS-CONF-2013-034 Yao, Moriond EW 2013

  30. Illustration of Combined Results u=1000 GeV u=5000 GeV m GH = 500 GeV m GH = 2000 GeV Unitarity Unitarity allowed Higgs Higgs S-T production production S-T allowed Illustrates interplay of different constraints ... and of direct and indirect bounds

  31. Heavy Singlet Boson LHC Reach in σ *BR/( σ *BR) SM Higgs 7+8 TeV 1 m H gg Æ s Æ VV L current 14 TeV, 300 fb - 1 0.1 projected 14 TeV, 3000 fb - 1 0.01 200 400 600 800 1000 m s H GeV L CMS-PAS-HIG-13-002/3 ATLAS-CONF-2013-013/030

  32. LHC Singlet Boson Reach Projection with 300 fb -1 @ 14 TeV Discovery Region Excluded by current heavy Higgs search (one spectator fermion) 125 GeV Higgs production exclusion Illustrates that direct limits/searches will dominate!

  33. Conclusions

  34. Conclusions Many models predict extended strong interactions Is this extended dynamics flavor-universal or not? • Introduced a flavorful top-coloron model • Constraints from FCNCs favor NMFV. • Same-sign tops, and therefore dileptons, an interesting signature for new colored scalars. Additional effects of extended strong interactions? • Color symmetry breaking sector can mix with EWSB • Constraints on Higgs mixing and from observed properties of Higgs boson • Discovery potential for heavy states at 14 TeV

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend