nanomagnetism part iii atomic scale properties
play

Nanomagnetism Part III Atomic-scale properties Olivier Fruchart - PowerPoint PPT Presentation

Nanomagnetism Part III Atomic-scale properties Olivier Fruchart Institut Nel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Nel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/


  1. Nanomagnetism – Part III Atomic-scale properties Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  2. SKETCH OF THE LECTURES Part I – Magnetization reversal Part II – Techniques Part III – Atomic-scale properties Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.2 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  3. MOTIVATING THE LECTURE – The need for nanomagnetism (reminder) Fundamental issues for nanomagnetism Magnetic grain media of current hard disks  Is a small grain (ferro)magnetic? Count number of surface atoms  Is a small grain stable against thermal fluctuations? − 21 J ≈ 25 meV k B T  300 K ≈ 4 × 10 100 k B T  300 K ≈ 2.5 eV Derive from macroscopic arguments  Decades-old (yet still modern) topic Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.3 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  4. TABLE OF CONTENTS 1. Ferromagnetic order in low dimensions  Structure and magnetic order  Magnetic moments (surfaces etc.)  Magnetic ordering (thermal effects) 2. Magnetic energy anisotropy 3. Interfacial effects Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.4 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  5. 1. FERROMAGNETIC ORDER – Metastable phases (fcc Fe) Robustness of ferromagnetic orders Theory: phase diagram of fcc iron (Fe) Properties of bulk Fe (P,T) ambiant conditions Body-Centered Cubic (bcc) Ferromagnetic − 1 ≈ 2.2  B atom L ow S pin T C = 1043 K T>1185 K A nti- F erro N on- M agn. Face-Centered Cubic (fcc,  -Fe ) & L ow S pin H igh S pin No magnetic order V. L. Moruzzi et al. , PRB39, 6957 (1989) See also: O.K. Andersen, Physica B 86, 249 (1977) Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.5 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  6. 1. FERROMAGNETIC ORDER – Metastable phases (fcc Fe) Effect of strain on the crystalline structure Magnetism of fcc Fe Fe/Cu(001) 300K growth with MBE: fcc>bcc 300K growth with PLD: fcc  High-spin and low-spin fcc phases? P. Ohresser et al., PRB59, 3696 (1999) Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.6 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  7. 1. FERROMAGNETIC ORDER – Metastable phases (fcc Fe) Spin-density wave antiferromagnetism Fe/Cu(001) Ferro. See also: H. L. Meyerheim et al., SDW - AF Phys. Rev. Lett. 103, 267202 (2009) D. Qian et al., PRL87, 227204(2001) Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.7 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  8. 1. FERROMAGNETIC ORDER – Surface magnetism – Naive views Probing surface magnetization Some results • Fe/W(110) : 0.14ml(+0.35µ B ) Surface techniques at OK • UHV/Fe(110); Ag/Fe(110): 0.26ml(+0.65µ B ) • Mossbauer with probe layers Plot m ( t ) at 0K: • Cu/Ni(111): -0.5ml • Magnetometry • Overlayers: Pd/Ni(111)/Re(0001) • XMCD (Too) simple picture: band narrowing at surfaces  Enhanced moment at surfaces E E d Bulk Surface s-p d s-p picture picture k k Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.8 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  9. 1. FERROMAGNETIC ORDER – Surface magnetism – Towards single atoms Co/Pt(997) Co/Pt(111) A. Dallmeyer et al. , Phys.Rev.B 61(8), R5153 (2000) Conclusions • Bulk: m L =0.14 µ B /at. P. Gambardella et al., Science 300, 1130 (2003) • Surface: m L =0.31 µ B /at. Conclusions • Bi-atomic wire: m L =0.37 µ B /at. • From bulk to atoms: • Mono-atomic wire: m L =0.68 µ B /at. considerable increase of orbital moment • 2 atoms closer to wire than 1 atom • bi-atom: m L =0.78 µ B /at. • bi-atomic wire closer to surface than wire • atom: m L =1.13 µ B /at. P. Gambardella et al., Nature 416, 301 (2002) Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.9 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  10. 1. FERROMAGNETIC ORDER – Surface magnetism – Polarizability and Stoner criterium Exchange polarization at interfaces Spontaneous polarization – Stoner criterieum Small Rh(4d) clusters studied in flight Pd( D )/Ni(111)/Re(0001) (Stern-Gerlach experiment) TOM U. Gradmann, Handbook… Fe/Pd multilayers XMCD A. J. Cox et al., PRL71, 923 (1993) A. J. Cox et al., PRB49, 12295 (1994) Handwavy explanation based on I   ,   F  1 J. Vogel et al., PRB55, 3663 (1997) Stoner criterium Conclusion: Pd sigifnicantly Conclusion: recuced bandwidth may polarized over several layers even drive ferromagnetism Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.10 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  11. 1. FERROMAGNETIC ORDER – Magnetic ordering Elements of theory • Ising (1925). No magnetic order at T>0K in 1D Ising chain. • Bloch (1930). No magnetic order at T>OK in 2D Heisenberg. (spin-waves; isotropic Heisenberg) • → N. D. Mermin, H. Wagner, PRL17, 1133 (1966) • Onsager (1944) + Yang (1951). Magnetic anisotropy 2D Ising model: Tc>0K stabilizes ordering Experiments Ni(111)/Re(0001) R. Bergholz and U. Gradmann, JMMM45, 389 (1984) Tc interpreted with molecular field Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.11 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  12. 1. FERROMAGNETIC ORDER – Magnetic ordering Naïve model Molecular field 2  B 2 J  J  1  T C = 0 z n W,1 ng J z s z b 3 k B N atomic layers 〈 z 〉= z b − 2  z b − z s  z neighbors -1 ∆ T ( t ) ~ t c N Less naïve… Experiments Thickness-dependant molecular field λ - ∆ T ( t ) ~ t c λ = 1 G.A.T. Allan, PRB1, 352 (1970) Conclusion : U. Gradmann, Handbook of Magn. Mater. Vol.7, ch.1 (1993) Naïve views are roughly correct Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.12 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  13. 1. FERROMAGNETIC ORDER – Magnetic ordering Effect of lateral size H.J.Elmers et al. , Phys.Rev.Lett.73, 898(94) U. Gradmann, Handbook of Magn. Mater. 7 (1993) Conclusion Tc also depends on size of islands (lateral dimensions) Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.13 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  14. 3. Magnetic anisotropy 1. Ferromagnetic order in low dimensions 2. Magnetic energy anisotropy  Microscopic origins of Magnetic Anisotropy Energy (MAE)  Surface versus magneto-elastic anisotropy  From surfaces (2D) to atoms (0D) 3. Interfacial effects Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.14 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  15. 2. Magnetic anisotropy – Basics Dipolar energy Mutual energy of two magnetic dipoles : µ   3 0 = − E μ . μ ( μ . r ).( μ . r )   1,2 1 2 1 2 3 2 π   4 r r Let us assume two magnetic dipoles 2 with vertical direction, either ‘up’ or ‘down’ : θ [ ] µ 2 0 θ = µ µ − θ E ( ) 1 3 cos cos 2 θ = ( ) 1 / 3 1,2 1 2 3 C 1 π 4 r Parallel alignment is favored for θ < θ ≈ ° 54 . 74 C Antiparallel alignment is favored for θ > θ ≈ ° 54 . 74 C ‘Cone’ of alignment Conclusions • Nanostructures: long axis favored • Films: in-plane favored 1 e z 2 = µ M d 0 Z 2 Olivier Fruchart – IWOS MASENA – Hanoi, Vietnam, Nov.2010 – p.15 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend