a detailed study of carbon chemical erosion
play

A detailed study of carbon chemical erosion R C E O V D III D - PowerPoint PPT Presentation

O F Y W T I I S S A detailed study of carbon chemical erosion R C E O V D III D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A in L-mode plasmas in the DIII-D divertor D I S D. G. Whyte, University


  1. O F Y W T I I S S A detailed study of carbon chemical erosion R C E O V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A in L-mode plasmas in the DIII-D divertor D I S D. G. Whyte, University of Madison - Wisconsin J.N. Brooks, Argonne National Laboratory P.C. Stangeby, University of Toronto N.H. Brooks , General Atomics 10th international workshop on carbon materials for fusion application September 17-19, 2003 Jülich, Germany 1 Carbon Workshop, Sept. 2003, Whyte

  2. O F Y W T I I S S R C E O V D III –D N I S N I U N NATIONAL FUSION FACILITY Outline S A N D I E G O M N O A D I S • L-mode plasmas for carbon erosion studies • Erosion modeling and interpretation • Erosion with attached divertor plasma � Divertor tile vs. main-wall tile � Determination of Y chem at outer strikepoint � Atomic carbon velocity distribution • Effect of plasma detachment on carbon erosion. • Discussion & Summary 2 Carbon Workshop, Sept. 2003, Whyte

  3. O F Y W T I I S S R C E O V H-mode plasma studies showed unexpected reduction D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S in carbon erosion in the DIII-D divertor Outer strikepoint (OSP) D 2 gas spectroscopy injection (a.u.) 10 ISP of new Upper divertor Brightness D- α 10 Y chem (%) (ph s -1 m -2 sr -1 ) D- β / D- α 10 20 1 10 19 0.1 CD / D- α OSP Lower divertor detached 0.1 10 -2 Year 10 -3 1992 2000 C 2 / D- α (x10) 80,000 90,000 100,000 Shot number 2000 3000 4000 time (ms) • Encouraging results on the use of carbon: � In-situ Y chem reduction at lower divertor. � Detachment, necessary for heat flux control, greatly reduces HC signals • …but tentative results: � Inconsistent plasma conditions over long-term study � ELMs in H-mode complicate interpretation of erosion and spectroscopy. 3 Carbon Workshop, Sept. 2003, Whyte

  4. O F Y W T I I S S R C L-mode, simple-as-possible plasmas ideal E O V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S for carbon studies 1.6 10 5 105500 105502 • Low power leads to ~ 105503 1.2 10 5 105504 105505 I s (A/m 2 ) constant T surf ~375 K 105513 105506 8 10 4 105507 105508 + 105509 4 10 4 • No ELMs 0.0 0.90 1.00 1.10 1.20 Ψ n • Density control leads to Langmuir probe good detachment control DTS 10 21 100 n e (m -3 ) T e (eV) 10 10 20 • Multiple discharges 1 � Improved DTS statistics Γ i (m -2 s -1 ) 10 23 � Redundant divertor diagnosis 10 22 � Multiple C & HC 2.5 3.5 4.5 5.5 line-average density (10 19 m -3 ) emissions measured. 4 Carbon Workshop, Sept. 2003, Whyte

  5. High resolution spectroscopy and O F Y W T I I S S R C E O V D III –D N I S N I U N NATIONAL FUSION FACILITY divertor sweeping diagnose erosion over S A N D I E G O M N O A D I S wide variety of surfaces High spectral resolution divertor spectroscopy (MDS) viewchords V1 V2 V3 V4 V5 V6 V7 #105505.2100 #105505.4900 baffle DTS 45 degree tile outer ring Row#1 Row#2 Row#3 Row#4 Langmuir probe clusters on lower divertor tiles • Absolute wavelength • Divertor tiles made from ATJ calibration from discharge graphite, an isostatically molded fine lamps during plasma shot grain graphite (+/- 0.001 nm ~ 300 m/s). • Multiple (>50) boronization layers • Can resolve T C < 0.5 eV. applied over +10 year lifetime. 5 Carbon Workshop, Sept. 2003, Whyte

  6. O F Y W T I I S S R C WBC Monte-Carlo code is used to E O V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S interpret HC spectroscopy 43.5% CD 4 , 3.7% C 2 D 2 , 24.8% C 2 D 4 , • Full dissociation chains of methane & 11% C 2 D 6 , 16% C 3 D 6 higher order HC’s C atom • MOLDYN reflections vs. E trajectories • Full HC spectrum launched into OSP plasma (DTS) with sonic flow to plate. • Particle followed until redeposition or leave simulation zone (~5-10 cm) • Added C 2 and C 3 rates for C 2 spectroscopic interpretation. � Close to C for ionization & diss. CX negligible in H plasma • Excitation rates of CD, C 2 , C I and CI photon efficiency CII vs. T e, n e to calculate expected   XB emission --> photon efficiency. ∑ = X CI ,910 nm ( T e ) ∆ t i , CI n e     S CI ,910 nm i 6 Carbon Workshop, Sept. 2003, Whyte

  7. O F Y W T I I S S R C Atomic carbon velocity distribution can E O V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S be an indicator of erosion source 1 WBC calculation of Thompson velocity • WBC computes emission distribution for emission-weighted atomic carbon velocity 100 eV D+ on carbon weighted f(v z ) arising from distribution (normal incidence_ HC dissociation into C I. f CI (v) • Thompson model with light- ion energy cutoff/correction predicts direct CI f(v z ) from D+ on C physical sputtering. 0 -10 0 10 20 v z (10 3 m/s) 1 / 2   E 3 / 2     E B + E df v ( E )   ∝ 1 −     ( E + E B ) 3   γ (1 − γ ) E dv       4m C m D γ = 2 ~ 0.49 ( m C + m D ) 7 Carbon Workshop, Sept. 2003, Whyte

  8. O F Y W T I I S S R C E O The main/inner wall tiles has 5-6 times higher V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S Y chem than the inner divertor tiles V1 C II D- γ 2 V2 • V1 is a rare location for ISP, CD BD small particle/energy fluence. Spectral Intensity at ISP (10 19 ph s -1 m -2 sr -1 nm -1 ) 0 428 430 432 434 • Spectroscopy verifies C II C 2 0.8 High spectral resolution divertor ~identical ISP plasmas at two spectroscopy (MDS) viewchords V1 V2 V3 V4 V5 V6 V7 locations: #105505.2100 #105505.4900 0 T e ~ 10 eV 517 515 516 baffle 2 n e ~1.5x10 19 m -3 DTS 45 degree tile outer C I ring Row#1 Row#2 Row#3 Row#4 Langmuir probe clusters on lower divertor tiles 1 • Boron (BD) higher from 0 909 910 908 inner wall. D- α 100 C II 0 659 656 657 658 8 Carbon Workshop, Sept. 2003, Whyte wavelength (nm)

  9. O F Y W T I I S S R C Attached outer strikepoint is dominated E O V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S by physical sputtering , Y chem = 0.3% Experiment 10 20 4 π x Brightness (ph s -1 m -2 ) WBC, Y chem =0.3% WBC, Y phys =1.8% 10 19 10 18 10 17 CD C 2 C I C II (431 nm) (516 nm) (910 nm) (514 nm) Incident plasma: T e =20 eV, E i ~5 T=100 eV, n e ~2.5x10 19 m -3 • • Matches of CD/C 2 ratio gives confidence in HC modeling. • Match of CII/CI ratio gives confidence in ion transport modeling. 9 Carbon Workshop, Sept. 2003, Whyte

  10. O F Y W T I I S S R C Neither erosion model fits the E O V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S CI spectral features. Thompson velocity WBC calculation of distribution for emission-weighted • Calculated f(v z ) convoluted with 100 eV D+ on carbon atomic carbon velocity 1 (normal incidence_ distribution spectrometer instrumental function f CI (v) for comparison to measured CI spectra. • Discrepancy with sputtering models 0 -10 0 10 20 v z (10 3 m/s) unresolved. data � Physical: T eff ~ 1 eV OK, shift too large Thompson 1 Thompson, λ shifted � Chemical - WBC: shift OK, but chemical erosion, WBC Normalized intensity T eff ~3 eV too large. • N.B. chemical erosion can actually lead to higher T eff,CI than physical 0 sputtering -0.05 0 0.05 λ - λ 0 (nm) 10 Carbon Workshop, Sept. 2003, Whyte

  11. O F Y W T I I S S R C WBC modeling predicts increasing E O V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S photon efficiency in detached plasmas CASE WBC-20 WBC-21 WBC-22 Plasma parameters at outer strikepoint • C 2 is particularly interesting Te (eV) 20 5 1 case: n e (m -3 ) 2.5e19 1.05e20 5.6e20 in 1 eV plasma no e- impact Photon-emission excitation rate coefficients (m 3 / s) ionization /dissociation but readily excited by e- impact C I (910 nm) 1.7e-15 1.5e-17 5.e-19 (E th ~2.4 eV). CD (431 nm) 5.6e-15 7e-15 1.5e-15 C 2 (516 nm) 2e-14 4e-14 1.16e-14 • In qualitative agreement with C + (514 nm) 5e-16 nil nil C 2 D 4 injection on JET at Photon efficiencies: Full hydrocarbon spectrum launched high density…C 2 most easily C I 4.4e-03 1.6e-3 1.7e-3 excited (Stamp et al.) CD 5.1e-2 0.45 0.22 1.1e-2 0.83 9.8 C 2 C II 4.2e-3 --- --- 11 Carbon Workshop, Sept. 2003, Whyte

  12. O F Y W T I I S S R C E O Detachment strongly suppresses signatures of V D III –D N I S N I U N NATIONAL FUSION FACILITY S A N D I E G O M N O A D I S chemical erosion at the OSP detached • HC brightness decreases to or 10 18 Brightness (ph s -1 m -2 sr -1 ) below detection limits (open CD (431 nm) 10 17 SAPP symbols) in detachment. #105079 10 17 #105196 C 2 Swan band C 2 (516 nm) 10 16 at OSP 10 18 attached BD (433 nm) detached 10 17 10 21 100 n e (m -3 ) T e (eV) 10 10 20 1 2.5 3.5 4.5 5.5 line-average density (10 19 m -3 ) 515 516 517 wavelength (nm) 12 Carbon Workshop, Sept. 2003, Whyte

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend