2016
play

2016 FOR LINZ estimates On monotone for approximations error - PowerPoint PPT Presentation

SLIDES 2016 FOR LINZ estimates On monotone for approximations error of Bellman / Isaacs equations Jakobsen R Espen . University of NTNU Norwegian Technology sience and RKAM 24.11.2016 , : / Bellman Isaacs T ecfns


  1. SLIDES 2016 FOR LINZ

  2. estimates On monotone for approximations error of Bellman / Isaacs equations Jakobsen R Espen . University of NTNU Norwegian Technology sience and RKAM 24.11.2016 ,

  3. : / Bellman Isaacs T ecfns Outline methods Monotone numerical 2 estimates Error last order 3 eqhs 2nd order 4 eqlns convex order Fractional eqins 5 convex 2nd order 6 ' ns convex eq non - Fractional order New eqins 7 convex non : -

  4. Bellman / equations T Isaacs . Controlled SDES % (b) dws + b%( XD { It dxs or = xex E { letftxs }=:u( g ( Xt ) , as ) x. t ) ds + map . Dynamic Programming Dutfd }=O + b9 sup { D ?u] tr[ oooo at + { , .BeUmaneg@ next ) gas =

  5. / Bellman equations T Isaacs . ti→T . t value initial value Terminal i ) > m

  6. / Bellman 1. equations Isaacs ti→T . t value value initial Terminal i ) > in Levy SDES ( jumps ) ii ) driven . tfz . ,z)N~( dzidt ) , ,oy%( Xs dXs = . . where at ))=v( A) t ECNC A. { [ ¥ y%,⇒Du]v(d⇒]= syp§ 0 tfz , > o[ulxty9xi⇒ ) ucx ) - - - - .

  7. / Bellman 1. equations Isaacs ti→T . t value value Terminal initial i ) > in Levy ( jumps ) SDES ii ) driven . tfz . ,z)N~( dzidt ) , ,oy%( Xs dXs = . . P ptoyssonmdmeas . jumptensthttrh where jump intensity ) [ o .tD=v( A) t ECNC A. § t measure Levy y%,⇒Du]v(d⇒]= syp§ tfz 0 , > o[ulxty9xi⇒ ) Ut + ucx ) - - - - . 4- - Jan = :

  8. Bellman / equations T Isaacs . iii ) 0 games : sum - opposite interests with controllers 2 f Elliot Katten - - Souganidis Fleming satisfy and value functions Upper lower Isaaes like equations e. g . ' P }=O ' Pu + fd { LAB Jo inaf + Utt u sgp

  9. / Bellman equations T Isaacs . assumptions Typical : , p ' P oaip bo fo ' B , ya g , , , , uniformly a ,p bounded Lifschitz and in are + f gcz ) v ( dz ) S ,< MZPVHH IHSTT < is , , weight some unless explicitly statet No uniform elhipti city .

  10. 2. methods Monotone numerical an ] ) Sh ( t 0 [ = × ah , , , Monotone offense is 0 ffuhn so : , + parabolicity assumption F approx > at in . - eq iij Consistency , [ y ] ) / Sn ( n [ y ] I E E rr ( h ) ' : - - . - stability Hun K iii ) La t h < 1 £ : 11 La - Souganidv Convergence by Bates 's

  11. 2. numerical methods Monotone Examples : . ukthh.hr# . hcHyukhL btcx ) (a) ban b- ( × ) upwind ! e u× g. - 02k ) uKtH-2ulnytuK= ( b ) ok e u×× uCx*oh)-2u{HtuK-oh= { (c) SL e 1 oi.org u× × ; , . , on )T idvldz ( O= o , , ... ukthltugntuanhlg (d) l↳fyktP - y Du ] vldz ) ) UH = tzfygwcdz - linear interpolation f + Is a Putty ) ) • + - µ ,

  12. 2. numerical methods Monotone Examples : explicit method Time implicit 0 my - , , , IMEX , - - . f . stability Monotonicity La CFL ⇒ +

  13. estimates Error 1st other equations 3 . Fractional 2nd 4 order equations , convex . order 5 equations , convex . 6 2nd equations , order non convex - . Fractional order New 7 equations , convex : non -

  14. 3. estimates Tst Error order eqins - of proof Modification comparison

  15. 3. estimates Tst Error order eqins - FkiDu)=0 of proof : at Modification comparison Fh ( × , Un ,[Un])=O Uht ' Ulh ( kg ) I. ij ( × ) uly ) at it y max - - . sotn Fty , Dyty ) ) def visa 30 + u . Uh FEE ,D×y ) Kh + consistency E + 1113×2411 a non . Hence awe proof in comparison as - - FCFDYTED , Dxytiyt ) FCI Unix ) Kh 1113×2411 µ + - - ' ) 0 0 ( he (e) = tgl y ( X , y ) y 12 X -

  16. 3. estimates Tst Error order eqins - , Du ) Flx 0 u of Proof : + = modification comparison Fhk , Un ,[un])=O Un + ' Uh C kg ) I. ij ( × ) u ( y ) at it y Max - - - ' ) 0 ( Units he at 5) e c + - ' ' ) 0 ( hk ) w ) sup I Un 0 ( eths Units uiy ) g) £ ye , E = - - - 0 ( e)

  17. 3. estimates 1st Error order eqins - Jhtufyl 2nd Does work for order NOT equations : ! Uh 0 F ( , D2u ) O = u + + × = . . . V - uig ) ? Ya ycxiy ) ) Un (E) , ) FCI Fly , D tkh 'HD4xyH s - - , . HM yexiyie Xi F =D I ' that Problem Need + ' Unix ) such . : f- conclude ! ts ( It ) %) ( xo to ←

  18. 4. Error estimates 2nd order ' ns eg convex - , Convex Regularization comparison + . coeff A. const , . B variable coeff Bellman . , . , general C variable Bellman coeff schemes . , . .

  19. . coeff 4A 2nd const order convex , . , . F ( D2u ) fcx ) 0 + u + = ↳ . gs ( y f .dx x ) - . . , * gs F(D2u)*g[ f 0 * gs = + + u in ZF(D2u*g{) [ Jensen ] I + fe , ) F ( D2u E C) Ue + - Kh2HD4u [ Consistency ] 3 ud ) , His Fn ( us , [ -

  20. . coeff 4 A 2nd const order convex . , , . Hence + Fn ( Us [ ue ] ) - fella Kh2HD4usH + f £ + Hf Us , , - + e) 0 ( h2i3 lip u no . of approximate subsolln scheme → comparison : , 0 ( h 's Min + e) Nn An -3 < Us - - 3+4=0 ( h± ) ( h2e £0 U < U ue Us + - - -

  21. . coeff 4 A 2nd const order convex , . , . 0 ( h± ) In An E U - Symmetric argument : ( h± ) 0 < u - OBS Need Un , uniformly h to be Lipschutz in : Duo

  22. 4 B 2nd coeff order Bellman variable , . , . Shaking coefficients regularization + Krylov 1997 1999 2000 , , Bowles ERJ SINUM 2005 MZAN 2002 MCOMP 2007 - , ,

  23. 4 B 2nd coeff order Bellman variable , . , . Shaking coefficients regularization + + fetch } { aocx ) 0 U = uxx + sup a / approximate + f0Cx+e ) } 0 ( × sup { + e) uE× 0 ' = + u a 0 let < { ,

  24. 4 B 2nd coeff order Bellman variable . , , . Shaking coefficients regularization + fon } { aocx ) 0 U + = + sup uxx a + f0Cx+e ) } 0 ( × + e) uI× sup { 0 ' = + u a 0 let's I , * i→ × e - f 9× ) ' V ao ( × ) uE×× ( x 0 - e) lel U e) E 0 < E C x + - + ,

  25. 4 B 2nd coeff order Bellman variable . , , . Shaking coefficients regularization + focx ) } { aocx ) 0 U + = + sup uxx a + f0Cx+e ) } sup { + e) uI× • 0 ' = ( × + u a 0 let < { , ' H ao ( × ) uE×× ( x f Ocx ) - e) G lel U e) E 0 < E C x + - + , f. . g{ ( e) 5 de . , . . * gd for ) F ' at ( × ) ( G us u < 0 + + * g[ ××

  26. 4 B 2nd coeff € order Bellman variable , . , . Shaking coefficients regularization + Hence ' Us u * g : = [ , fok ) } [ smooth subsoil sup { at C x ) @ e) 0 + ue + ×× ; 4 A in as + HE 3) 0 ( htz ) t ( u 4 ud Uh ii. eh 06 £ s + u . . - - . confide pendents )

  27. 4 B 2nd coeff order Bellman variable . , , . Shaking coefficients regularization + Difficulty . dep Need Lipschutz cent for Uh : + . h uniformly in . in general , Not known ok for but SL schemes Bales ERJ MZAN 2002 - , " Symmetric " FDM Krylov 2005 , ...

  28. 2nd 4C . coeff Bellman order , general schemes var . , , . . dip ! NO Lipschutz / scheme cent on . Kvylov 1999 2000 , - , MC0M2007P Barthes ERJ SINUM 2005 - Best results ( 4 B ) bound before Upper as . " of linearization Lower bnd " ecf ' .via n .

  29. 2nd 4C . coeff Bellman order , general schemes var . , , . " of linearization Lower bnd " eq ' .via : n Lin ui ui ii Lo + f0 = M , ( ) uent 1 ui uj ' ' + + f 03=0 { up { Lou + u ¥ Lonusntfontflnci ) + Switching control { E } min - jt N Ce 's Lions trick ' ul t £ i > m -

  30. 2nd 4C . coeff Bellman order , general schemes var . , , . " of linearization Lower bnd " eq ' .via : n Mwai Long by ui ui ii Lo + fo = M , ( ) ui ' ' → { + + f 03=0 up { Lou + u + fon ) + = et ti ul C £ 1 - + regularize ( ! ) coeff shake . 0 ( h 's ) 4253 ) { ± - Uh 0 ( > e u < - + ~ ... . optimize

  31. estimates 5. nonkralffractional Error order convex - |µ n%,⇒Du]v(d⇒↳=O syp§ Ut , > olulxtrfexiz ) + + u - - - . - GOFU fractional order Ju ex = - . , - quadrature Monotone difference schemes Linear equations : book Mollification Tanker cont arg - . Bellman equations : 2008 ) Namer !YToad La Karlsen Chioma Math ERJ 2010 , , { rylov " Karlsen Bis SINUM ERJ theory was , , a • •

  32. - 2nd estimates 6 order eefns non convex nor - . ) ERJ BIT 2004 : } Remonstrations Erewjuhtnfyu obstacle Bellman ND + : 2006 Anal ERJ Asymptotic Bellman . - 2006 Zidani Bonnans Maroso , , cage Uniform elliptic eqlns : - Souganidis Caffarelli 2008 papers ) ] " ( 2 Turanova 2015 Krylov 2015

  33. Error estimates 7 / fractional nonlocal order convex non - - . preprint New results soon - . First result for nonlocal and convex eqhs non Chowdhury First of general result for order Isaac T > eqhs . degenerate ecfns ! with Joint : Bangalore ) B is CTIFR Imran was , , Bangalore ) Indrani CTIFR

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend