1v sub 100 w 12b all mos a d converters in the log domain
play

1V sub-100 W 12b all-MOS A/D Converters in the Log-Domain - PowerPoint PPT Presentation

XVII Conference on Design of Circuits and Integrated Systems (DCIS02) 1V sub-100 W 12b all-MOS A/D Converters in the Log-Domain Francisco Serra-Graells paco.serra@cnm.es Wednesday 20th Nov 2002 Institut de Microelectr` onica de


  1. XVII Conference on Design of Circuits and Integrated Systems (DCIS’02) 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain Francisco Serra-Graells paco.serra@cnm.es Wednesday 20th Nov 2002 Institut de Microelectr` onica de Barcelona - Centro Nacional de Microelect´ onica, Spain CENTRE�NACIONAL�DE�MICROELECTRÒNICA IMB

  2. Index 2/23 ◮ Introduction to Σ∆ ADC ◮ All-MOS Log-Domain Proposal ◮ Low-Voltage Basic Building Blocks ◮ Second-Order Effects ◮ Design Examples ◮ Conclusions F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  3. Introduction to Σ∆ ADC 3/23 Portable and Digital CMOS ◮ mixed SoCs technologies Analog Digital ↓ ↓ §¢ Modulator low-power low-voltage Antialiasing Limiter Filter Decimator Quantizer Σ∆ ADCs all-MOS y in y 0 b out H � 2 (2 L + 1) � M � � 2 L +1 2 N − 1 DR ideal = 3 π DAC 2 π N =1 y 0 y 1 y i y L b out M -oversampling ratio + 1 ¿ f 1 + 1 ¿ fi + 1 ¿ fL 1 1 1 s s s L -order frequency selective H -stage 1 1 1 ¿ b 1 ¿ bi ¿ bL M N -bit quantization y high y dac y low ◮ 1bit → no linearity problems       at Quantizer/DAC 1 − 1 0 0 0 τ f 1 τ b 1       d Y ss 1  0 0     − 1  =  Y ss +  y 0 +  y dac 0       τ fi τ bi d t    1 − 1 0 0 0 ◮ Single-stage → compact circuits τ fL τ bL F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  4. Index 4/23 ◮ Introduction to Σ∆ ADC ◮ All-MOS Log-Domain Proposal ◮ Low-Voltage Basic Building Blocks ◮ Second-Order Effects ◮ Design Examples ◮ Conclusions F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  5. All-MOS Log-Domain Proposal 5/23 ◮ Instantaneous Companding theory ◮ MOSFET operating in subthreshold Externally�Linear�Signal�Processing G weak inversion V GB Non-linear y in x in x out y out V SB,DB ≫ V GB − V TO -1 I D Signal�Processing F F n D S DR DR forward saturation < x y DR y DR y V DB V SB Compression Expansion V DB − V SB ≫ U t B VGB − VTO − VSB y = F ( x ) = e x I S = 2 nβU 2 I D = I S e e nUt Ut t F d y i d x i 1 1 τ fi e x i − 1 − x i GD, SD or BD Companding: d t = τ fi y i − 1 ← → d t = F y i = I Di x i = V GBi ← → I S nU t ◮ Pros & cons: • Internal DR V compression → True low-voltage operation √ Compatible with non-linear caps (e.g.MOS) √ → Low-power consumption √ • Subthreshold operation Low-frequency applications (typ. < 1MHz) × F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  6. Index 6/23 ◮ Introduction to Σ∆ ADC ◮ All-MOS Log-Domain Proposal ◮ Low-Voltage Basic Building Blocks ◮ Second-Order Effects ◮ Design Examples ◮ Conclusions F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  7. Low-Voltage Basic Building Blocks 7/23 I in I lim I 0 I 1 I L b out ◮ CMOS circuit techniques for: + + 2 f c 1 1 1 1 ¼ s +2 f c s s ¿ 1 ¿ L ¼ M • Input compressor and limiter I high I dac • Anti-aliasing filter • Modulator integrator I low • Modulator quantizer I in I lim V lim V 0 V 1 V L b out • Modulator DAC + + + F 1 1 1 1 1 1 G 0 G 1 G L s s s C 0 C 1 C L I high V dac ◮ Target specs: F F I low • Very low-voltage (1V) • Digital Technology (MOS-only) • Audio bandwidth • Low-power (sub-100 µ W) ◮ Application example: Hearing Aids F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  8. Low-Voltage Basic Building Blocks 8/23 ◮ Input compressor V − Vref I ref I = F ( V ) = I ref e I > 0 nUt M4 M5 I in K K 1 Class-A operation: I ref M6 M7 C in � I in � V in = V ref + nU t ln + 1 | I in | < I ref V ref V in M2 M1 I ref Simple frequency compensation: C comp M3 � ζ = 1 KC comp 2 C in • I ref defines full-scale in Class-A • V ref optimizes low-voltage operation • Low input impedance ( < 1KΩ) for optional linear V → I conversion at input F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  9. Low-Voltage Basic Building Blocks 9/23 ◮ Input compressor with limiter  I ref + I in | I in | ≤ I knee  I lim = I ref + I in ± PI knee | I in | > I knee  1 + P I ref I ref piece-wise transfer function: M9 M10 M11 M14 M15 1 P K 1 I in K 1 I lim - I ref I ref - I knee M12 M13 1+ P I lim 1 P I ref + I knee - I knee V lim V ref I in I knee M8 • I knee selects the input threshold • P defines compression ratio F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  10. Low-Voltage Basic Building Blocks 10/23 ◮ Anti-aliasing filter I -domain 1st-order low-pass ODE: M4 M5 d I 0 d t = − 2 πf c I 0 + 2 πf c I lim I tun 0 V -domain non-linear ODE: V lim V 0 M1 M2 I tun 0 I cap 0 d V 0 Vlim − V 0 d t = − 2 πf c nU t + 2 πf c nU t e nUt M3 C 0 Q -domain circuit ODE: d Q 0 d V 0 • Tuning parameter I tun 0 Vin − V 0 = C 0 = − I tun 0 + I tun 0 e nUt d t d t • Thermal cancellation for f c � �� � I cap 0 through PTAT I tun 0 f c = 1 I tun 0 • Non-linear NMOS capacitor C 0 2 π nU t C 0 F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  11. Low-Voltage Basic Building Blocks 11/23 ◮ Modulator Integrator positive τ fi case: I -domain ODE for the τ fi case: M4 M5 d I i d t = 1 I i − 1 τ fi I tunfi V -domain non-linear ODE: V i -1 V i M1 M2 I capi d V i d t = nU t Vi − 1 − Vi e nUt τ fi M3 C i Q -domain circuit ODE: • Tuning parameter I tunfi d Q i d V i Vi − 1 − Vi d t = C i = I tunfi e nUt d t • Thermal cancellation for τ fi � �� � I capi through PTAT I tunfi τ fi = nU t C i • Non-linear NMOS capacitor C i I tunfi Log-mapping (i.e. I > 0) → coefficients only charge xor discharge caps! F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  12. Low-Voltage Basic Building Blocks 12/23 ◮ Modulator Integrator Σ∆ modulator case ( τ fi > 0 τ bi < 0): OP designed at SS-matrix level: I tunfi       V i- 1 V i 1 − 1 0 0 0 ¿ fi 1 1 τ f 1 τ b 1       ¿ bi d I ss 1  0 0     − 1  =  I ss +  I 0 +  I dac I capi 0       τ fi τ bi d t    1 − 1 V dac 0 0 0 C i τ fL τ bL In general, matrix transformation may be required to ensure DC Differential integrator: solution for I > 0. . . Coefficients of the same row � � d Q i d V i Vi − 1 nUt − τ fi − Vi Vdac d t = C i = I tunfi e e e nUt nUt can share half circuitry d t τ bi � �� � I capi F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  13. Low-Voltage Basic Building Blocks 13/23 ◮ Modulator Quantizer I -domain switching scheme: ( I high - I low )  I buffer I low  1 for V L > V ref b out = I ref 0 for V L < V ref  b out V dac V ref b clk b clk b clk V high,low Q b out D V L V ref V -domain switching scheme: I buffer I high I low I ref V high V dac V ref ◮ Modulator DAC b out  � I high �  nU t ln for b out = 1   I ref V dac = V ref + dummies � I low � V low b out  nU t ln for b out = 0   I ref F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  14. Index 14/23 ◮ Introduction to Σ∆ ADC ◮ All-MOS Log-Domain Proposal ◮ Low-Voltage Basic Building Blocks ◮ Second-Order Effects ◮ Design Examples ◮ Conclusions F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  15. Second-Order Effects 15/23 ◮ Moderate Inversion • e x degradation causes signal distortion 4 10 Strong�Inversion • Wide ( W/L ) to keep devices in deep 2 10 weak inversion even at full-scale 0 Moderate 10 0 I = I -2 D S 10 S V = V +2ln( -1) e nU V + nU I /I » GB TO t TO t D Weak -4 10 -50 /Hz] V = V Moderate GB TO -6 10 rms Inversion 2 I =ln (2) I » I S /2 D S Output�PSD�[dB A -100 ¹ -8 10 -10 10 -150 -20 -10 0 10 20 30 40 ( V -V ) /nU GB TO t VGB − VTO − VSB -200 IC = I D I D = I S e e I S ≪ 1 nUt Ut Quantizer ↓ � � VGB − VTO − VSB -250 I D = I S ln 2 1 + e e 2 nUt 2 Ut 0.1 1 10 100 1000 Frequency�[KHz] F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

  16. Second-Order Effects 16/23 ◮ Thermal Noise . . . block contributions: Equivalent Drain-current noise PSD: 0 d i 2 = 4 KT g ms Dn d f 2 -50 /Hz] Thermal rms Total Output�PSD�[dB A At similar biasing, dominant devices -100 ¹ are those in weak inversion where First Integ. ( g ms /I D ) max : -150 Second d i 2 d v 2 = 2 q ( nU t ) 2 Dn GBn = 2 qI D Third d f d f I D -200 Quantizer Fourth Main blocks are the compressor, anti- -250 0.1 1 10 100 1000 aliasing, 1st integrator and DAC, so: Frequency�[KHz] I ref ≡ I tun 0 ≡ I tunf 1 ≡ I buffer • Class-A operation results in: SNR ∝ +3dB/oct( I ref ) F.Serra-Graells 1V sub-100 µ W 12b all-MOS Σ∆ A/D Converters in the Log-Domain DCIS’02

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend