02 05 2014 4 1 2 built in potential
play

02/05/2014 4.1.2 Built-in Potential N-type P-type (a) N d N d N - PDF document

02/05/2014 Chapter 4 PN Junctions 4.1 Building Blocks of the PN Junction Theory + V I Donor ions N P N-type I P-type diode symbol V Forward bias Reverse bias PN junction is present in perhaps every semiconductor device. Slide


  1. 02/05/2014 Chapter 4 PN Junctions 4.1 Building Blocks of the PN Junction Theory – + V I Donor ions N P N-type I P-type diode symbol V Forward bias Reverse bias PN junction is present in perhaps every semiconductor device. Slide 4-76 Slide 1-76 4.1.1 Energy Band Diagram of a PN Junction N-region P-region E f is constant at E f (a) equilibrium E c E c and E v are known E c E f relative to E f (b) E v E v E c E c and E v are smooth, E f (c) the exact shape to be E v determined. Neutral Depletion Neutral A depletion layer layer N-region P-region E c exists at the PN junction where n  0 E f (d) E v and p  0. Slide 4-77 Slide 1-77 1

  2. 02/05/2014 4.1.2 Built-in Potential N-type P-type (a) N d N d N a N a E c q  bi (b) E f E v V  bi (c) x x N x P 0 Can the built-in potential be measured with a voltmeter? Slide 4-78 Slide 1-78 4.1.2 Built-in Potential kT N      q A kT N-region n N N e A ln c d c q N d 2 n kT N N    q B kT   P-region n i N e B ln c a c 2 N q n a i   kT N N N        B A ln c a ln c   bi 2 q n N   d i kT N N   ln d a bi 2 q n i Slide 1-79 Slide 4-79 2

  3. 02/05/2014 4.1.3 Poisson’s Equation Gauss’s Law: E ( x +  x ) E ( x )   s : permittivity (~12  o for Si)  : charge density (C/cm 3 )  x x Poisson’s equation Slide 4-80 Slide 1-80 4.2 Depletion-Layer Model 4.2.1 Field and Potential in the Depletion Layer On the P-side of the Neutral Region Depletion Layer Neutral Region depletion layer,  = – qN a N P x x 0 N P n p d E qN    a  dx s qN d qN qN x      P p E ( x ) a x C a ( x x ) x x  1  P n N – qN s s a On the N-side ,  = qN d  E qN   d - E ( x ) ( x x ) N x x x p s 0 n N P Slide 4-81 Slide 1-81 3

  4. 02/05/2014 4.2.1 Field and Potential in the Depletion Layer Neutral Region Depletion Layer Neutral Region N P – x n x 0 N p P The electric field is continuous at x = 0. N a |x P | = N d |x N | Which side of the junction is depleted more? A one-sided junction is called a N + P junction or P + N junction Slide 4-82 Slide 1-82 4.2.1 Field and Potential in the Depletion Layer On the P-side,  E qN   2 V ( x ) a ( x x ) P  2 s x x x p 0 n N P Arbitrarily choose the V  bi voltage at x = x P as V = 0. x x x On the N-side, P n N p E qN c    2 V ( x ) D d ( x x )   bi , built-in potential N  2 E s f E qN v     2 d ( x x ) bi N  2 s Slide 4-83 Slide 1-83 4

  5. 02/05/2014 4.2.2 Depletion-Layer Width Neutral Region Depletion Layer Neutral Region N P – x n x p 0 N P V is continuous at x = 0   2   1 1       x x W s bi   P N dep q N N   a d If N a >> N d , as in a P + N junction,   2 | | | |     W s bi x x x N N 0 dep N P N d a qN d What about a N + P junction? 1 1 1 1    where    W 2 qN N N N lighter dopant density dep s bi d a Slide 4-84 Slide 1-84 EXAMPLE : A P + N junction has N a =10 20 cm -3 and N d =10 17 cm -3 . What is a) its built in potential, b)W dep , c)x N , and d) x P ? Solution : a)  20  17 6 kT N N 10 10 cm     ln d a 0 . 026 V ln 1 V bi 2  q 10 20 cm 6 n i 1 / 2          2 2 12 8 . 85 10 14 1 b)      W s bi 0 . 12 μ m   dep   19  17 qN 1 . 6 10 10   d   c) x W 0 . 12 μ m N dep       4 d) x x N N 1 . 2 10 μ m 1 . 2 Å 0 P N d a Slide 4-85 Slide 1-85 5

  6. 02/05/2014 4.3 Reverse-Biased PN Junction V – + N P      2 ( | V |) 2 potential barrier E c   W s bi r s q  bi dep qN qN E c E f E f E v E v 1 1 1 1 (a) V = 0    N N N lighter dopant density E c d a q  bi + qV E fp • Does the depletion layer E v qV E c widen or shrink with E fn increasing reverse bias? E v (b) reverse-biased Slide 4-86 Slide 1-86 4.4 Capacitance-Voltage Characteristics N P N d N a Conductor Insulator Conductor W dep  Reverse biased PN junction is  C A s dep W a capacitor. dep • Is C dep a good thing? • How to minimize junction capacitance ? Slide 4-87 Slide 1-87 6

  7. 02/05/2014 4.4 Capacitance-Voltage Characteristics 1/ C dep 2 Capacitance data 2 W   1 2 ( V )  dep  bi 2 2  2 2  qN A C A S dep s Slope = 2/ qN  s A 2 V r –  b i Increasing reverse bias • From this C-V data can N a and N d be determined? Slide 4-88 Slide 1-88 EXAMPLE: If the slope of the line in the previous slide is 2x10 23 F -2 V -1 , the intercept is 0.84V, and A is 1  m 2 , find the lighter and heavier doping concentrations N l and N h . Solution:    2 N 2 /( slope q A ) l s      23   19    14  8 2 2 /( 2 10 1 . 6 10 12 8 . 85 10 10 cm )   15  3 6 10 cm  2 q 0 . 84 20 kT N N n 10 bi         18 3 ln h l N i e e 1 . 8 10 cm kT 0 . 026 bi h 2  15 q n N 6 10 i l • Is this an accurate way to determine N l ? N h ? Slide 4-89 Slide 1-89 7

  8. 02/05/2014 4.5 Junction Breakdown I Forward Current V B , breakdown voltage V R Small leakage Current A P N R C A 3.7 V IC Zener diode B D A Zener diode is designed to operate in the breakdown mode. Slide 4-90 Slide 1-90 4.5.1 Peak Electric Field Neutral Region increasing reverse bias N+ N a P x p 0 1 / 2   qN  (a) 2    E ( 0 )  ( | V |)  E E p  bi r   E p s increasing reverse bias  2 E    s crit V x B bi 2 qN x p (b) Slide 4-91 Slide 1-91 8

  9. 02/05/2014 4.5.2 Tunneling Breakdown Dominant if both sides of a junction are very heavily doped. Filled States - Empty States E c ε E v  H /  J G e p I   E E 6 10 V/cm V p crit Breakdown Slide 4-92 Slide 1-92 4.5.3 Avalanche Breakdown • impact ionization : an energetic E electron generating electron and c original hole, which can also cause electron E impact ionization. fp E • Impact ionization + positive v feedback  avalanche breakdown  2 E  crit s V electron-hole B 2 qN pair generation 1 1 1 E    V c E B N N N fn a d Slide 4-93 Slide 1-93 9

  10. 02/05/2014 4.6 Forward Bias – Carrier Injection Forward biased V = 0 V=0 Forward biased V I=0 – + E c N P  q  bi - E c E f q  bi – qV E v E fn qV E fp E v + Drift and diffusion cancel out Minority carrier injection Slide 4-94 Slide 1-94 4.6 Forward Bias – Quasi-equilibrium Boundary Condition      ( E E ) / kT ( E E ) / kT ( E E ) / kT   n ( x P ) N e N e e c fn c fp fn fp c c  ( E E ) / kT   qV / kT n e n e fn fp P 0 P 0 E c E c E fn • The minority carrier E fn E fn E fp densities are raised E fp by e qV/kT E v E v • Which side gets more carrier injection? x x x N x P 0 N 0 P Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-95 Slide 1-95 10

  11. 02/05/2014 4.6 Carrier Injection Under Forward Bias– Quasi-equilibrium Boundary Condition 2 n   q V kT q V kT n x P ) n e i e ( P 0 N a 2 n   q V kT q V kT p ( x P ) p e i e N 0 N d     qV kT  n ( x ) n ( x ) n n ( e 1 ) P P P 0 P 0      qV kT p ( x ) p ( x ) p p ( e 1 ) N N N 0 N 0 Slide 1-96 Slide 4-96 EXAMPLE: Carrier Injection A PN junction has N a =10 19 cm -3 and N d =10 16 cm -3 . The applied voltage is 0.6 V. Question : What are the minority carrier concentrations at the depletion-region edges? Solution :  q V kT   0 . 6 0 . 026  11 -3 n ( x ) n e 10 e 10 cm P P 0  q V kT  4  0 . 6 0 . 026  14 -3 p ( x ) p e 10 e 10 cm N N 0 Question : What are the excess minority carrier concentrations?     11   11 -3 Solution : n ( x ) n ( x ) n 10 10 10 cm P P P 0     14  4  14 -3 p ( x ) p ( x ) p 10 10 10 cm N N N 0 Slide 4-97 Slide 1-97 11

  12. 02/05/2014 4.7 Current Continuity Equation   J ( x ) J ( x x )  p  p   p     A A A x  q q A a e r a J p ( x ) J p ( x +  x )     J ( x x ) J ( x ) p  p p  q p   x  dJ p p Volume = A ·  x   q  dx  x  x Slide 4-98 Slide 1-98 4.7 Current Continuity Equation dJ p  p Minority drift current is negligible;   q  dx  J p = – qD p dp/dx  2 d p p  qD q p  2 dx p   2 d n n    2 d p p p    2 2 dx 2  2 L dx D L n p p p L p and L n are the diffusion lengths     L D L D n n n p p p Slide 4-99 Slide 1-99 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend