what magnetic measurements tell us what magnetic
play

What Magnetic Measurements tell us What Magnetic Measurements tell - PowerPoint PPT Presentation

What Magnetic Measurements tell us What Magnetic Measurements tell us about magnetism? about magnetism? Viorel Pop Babe -Bolyai University, Faculty of Physics, Cluj-Napoca, Romania Magnetic moment An electrical current, I, is the source of


  1. What Magnetic Measurements tell us What Magnetic Measurements tell us about magnetism? about magnetism? Viorel Pop Babe ş -Bolyai University, Faculty of Physics, Cluj-Napoca, Romania

  2. Magnetic moment An electrical current, I, is the source of a magnetic field B Idl Current I Magnetic field generated by a single-turn coil far from the origin: r m µ I B = θ 3 0 sin with 2 R r is by definition the magnetic moment of the single-turn coil m I

  3. magnetisation M χ magnetic susceptibility μ magnetic permeability r ∑ r m = M V M χ = H ( ) r r r = µ + B H M B 0 = µ B=µ 0 (H+ χ H)= µ 0 (1+ χ )H= µH H ( ) = + µ µ 1 χ 0 μ 0 = 4 π⋅ 10 -7 H/m

  4. Diamagnetic r M χ (b) m = (a) 0 χ < 0 H χ T C, Cu, Pb, H 2 O, NaCl, SiO 2

  5. Diamagnetic r M χ (b) m = (a) 0 χ < 0 H χ T C, Cu, Pb, H 2 O, NaCl, SiO 2 M 1/ χ T − 1 χ = Paramagnetic C r χ ≠ f(H) m ≠ 0 J ij = 0 χ χ > 0 1/C T Na, Al, CuCl 2 H if χ ( µ B /T ∙ f.u) if χ (emu/mole) 3 k B µ = C µ = µ + eff 1 ⋅ µ µ ( µ = ⋅ µ ( µ = ⋅ J g J ( J ) 8 4 , 466 N ) C ) C 0 eff B eff B eff B

  6. Diamagnetic r M χ (b) m = (a) 0 χ < 0 H χ T C, Cu, Pb, H 2 O, NaCl, SiO 2 M 1/ χ T − 1 χ = Paramagnetic C r χ ≠ f(H) m ≠ 0 J ij = 0 χ χ > 0 1/C T Na, Al, CuCl 2 H if χ ( µ B /T ∙ f.u) if χ (emu/mole) 3 k B µ = C µ = µ + eff 1 ⋅ µ µ ( µ = ⋅ µ ( µ = ⋅ J g J ( J ) 8 4 , 466 N ) C ) C 0 eff B eff B eff B r m ≠ 0 Magnetic ordered J ij ≠ 0 χ >> 0

  7. a) ferromagnetic r r J ij > 0 M s ≠ 0 = − ⋅ 2 S i S H J ij j Fe, Co, Ni, Gd… M T 1 T 2 m = H N M T 1 <T 2 <T c <T 3 M ii Molecular field 1 / χ T 3 approximation θ = T c H C χ = − θ T Curie – Weiss law M s (0) = g J µ B J T c θ T

  8. b) antiferromagnetic Η Η Η=0 Η Η χ J ij < 0 M s =0 χ ⊥ r r = M M A B χ ⎜⎜ MnO, Mn, Cr… T T N 1 / χ θ < 0 + M M C χ = = A B + θ H T θ T T N

  9. c) ferrimagnetism J ij < 0 r r ≠ M M M s ≠ 0 A B Fe 3 O 4 , ferrites, GdCo 5 ,…

  10. T < T c N AA ≈ N BB N AA > N BB N AA < N BB M M M M A M A M A M=M A -M B M 0 M=M A -M B M 0 M 0 M= ⎜ M A -M B ⎜ T c T c 0 0 0 T comp T c T T T M B M B M B M=M A -M B 1/ χ T > T c σ 1 1 T = + − χ χ − θ C T ' 0 θ 0 T T c

  11. M 1 / χ M s (0) C χ = − θ T T c θ T

  12. M T 1 M s (T 1 ) T 2 χ p T 3 M s (T 2 ) = + χ M M H s p M s (T 3 ) T 1 < T 2 < T 3 H

  13. M T 1 M s (T 1 ) T 2 χ p T 3 M s (T 2 ) = + χ M M H s p M s (T 3 ) T 1 < T 2 < T 3 H 6 5 Al 5 Mn 3 Ni 2 Al 5 Mn 3 Ni 2 5 T = 10 K 5.2 4 5 4 M s ( µ B /f.u.) M( µ B /f.u.) 4.8 3 3 M( µ B /f.u.) 4.6 4.4 y = 5.0293 + 0.00043122x R= 0.10622 2 2 4.2 T = 10 K y = 4.7774 + 0.009374x R= 0.96475 T = 100 K 4 T = 200 K y = 4.218 + 0.023918x R= 0.99702 T = 300 K M s = 5.03 µ B /f.u. y = 3.535 + 0.022673x R= 0.99868 1 3.8 1 T c = 401 K 3.6 5 6 7 8 9 10 0 µ 0 H (T) 0 100 200 300 400 500 0 T (K) 0 2 4 6 8 10 µ 0 H (T)

  14. + + +++ + + + + + + + + + H a H a M s H d M s H d - - - - - - - - - - - - - - r r = = = − H M H N M H N M N ⊥ II d s d s d d

  15. The influence of the demagnetising field on the magnetisation curves r r r r r r = − = = + H M H a = applied field N H H H H d d i a d N dx = N dy = N dz = 1/3. sphere l N d = 0 r r d << l ( ) M d = − − θ ⋅ O 1 H d cos N d = -1 d >> l θ r M ( ) ( ) = χ = χ + = χ − M H H H H M N a d a d χ = M H a + χ 1 N d M M 1/N d H a H

  16. H d ≠ 0 M T 1 M s (T 1 ) T 2 T 3 M s (T 2 ) M s (T 3 ) = + χ M M H s p 5 Al 5 Mn 3 Ni 2 T 1 < T 2 < T 3 T = 10 K 5.2 4 5 M( µ B /f.u.) 4.8 3 M( µ B /f.u.) 4.6 H 4.4 y = 5.0293 + 0.00043122x R= 0.10622 2 4.2 T = 10 K y = 4.7774 + 0.009374x R= 0.96475 T = 100 K 4 T = 200 K y = 4.218 + 0.023918x R= 0.99702 T = 300 K y = 3.535 + 0.022673x R= 0.99868 3.8 1 3.6 5 6 7 8 9 10 µ 0 H (T) 0 0 2 4 6 8 10 µ 0 H (T)

  17. 5 Al 5 Mn 3 Ni 2 T = 10 K 5.2 4 5 M( µ B /f.u.) 4.8 3 M( µ B /f.u.) 4.6 4.4 y = 5.0293 + 0.00043122x R= 0.10622 2 4.2 T = 10 K y = 4.7774 + 0.009374x R= 0.96475 T = 100 K 3 4 T = 200 K y = 4.218 + 0.023918x R= 0.99702 T = 300 K y = 3.535 + 0.022673x R= 0.99868 GdCo 4 Si 3.8 1 3.6 5 6 7 8 9 10 T = 4 K µ 0 H (T) 2,5 0 0 2 4 6 8 10 µ 0 H (T) 2 M( µ B /f.u.) = + χ M M H 1,5 s p 1 0,5 0 0 2 4 6 8 10 µ 0 H (T)

  18. ⎛ − ⎞ a = + χ ⎜ 1 ⎟ M M H s p ⎝ ⎠ H 3 GdCo 4 Si T = 4 K 2,5 3 2 2,9 M( µ B /f.u.) M s (T) 2,8 1,5 2,7 M( µ B /f.u.) 2,6 2,5 1 2,4 2,3 0,5 2,2 2 3 4 5 6 7 8 9 10 µ 0 *H (T) 0 0 2 4 6 8 10 µ 0 H (T)

  19. Case study: magnetic measurements on plate shape samples NO MAGNETOCRYSTALLINE ANISOTROPY M H H H sat = M s H Magnetic measurements give magnetisation (A/m)

  20. PERPENDICULAR ANISOTROPY M H H sat = H a H Magnetic measurements give magnetocrystalline anisotropy M Magnetic measurements give magnetisation (A/m) H H sat = M s H

  21. M M s (0) 2 2 µ µ + 1 N Ng J ( J ) = ii B o T c 3 k B ? T c T T → 0K M s (0) = g J µ B J 0 For the rare earth (Gd for example): J 0 =J p For 3d transition metals (Fe, Co, Ni…), the orbital moment is blocked by crystalline field: T → 0K M s (0) = g J µ B S 0

  22. Curie temperature evaluation 2 2 ⎛ − ⎞ ⎡ ⎤ + 10 1 T → T c ; T < T c M ( T ) ( J ) T ⎜ ⎟ = ⋅ 1 ⎢ ⎥ ⎜ ⎟ 2 2 0 3 ⎣ ⎦ + + ⎝ ⎠ M ( ) 1 T J ( J ) c 10 ThFe 11 C 1.5 50 8 40 30 6 M 2 (a.u.) M(a.u.) 20 4 10 0 300 350 400 450 500 550 600 650 700 2 T(K) 0 200 400 600 800 1000 1200 O. Isnard, V. Pop, K.H.J. Buschow, T(K) J. Magn. Magn. Mat. 256 (2003) 133

  23. T c (Fe) SmCo 5 +20 wt% Fe_8hMM 10 8 8 7 6 6 5 M (a.u.) M (a.u.) 4 3 4 2 1 0 2 200 400 600 800 1000 1200 T(K) T c = 1119 K 0 200 400 600 800 1000 1200 T(K)

  24. In the low magnetisation region - for example T → T c; T < T c 2 4 M M = + + ⋅ ⋅ ⋅ − µ F m ( M ) a b MH 0 2 4 µ dF m M a 2 0 3 = = − 0 + = µ or M aM bM H 0 dM H b b molecular field approximations: ( ) 2 µ − µ + + 3 2 2 1 N T T ( J J ) T 3 0 0 + = µ ii c M M H 0 ( ) 2 2 + T 10 1 M J C c 0 H m = N ii M ( ) N ii = T c / C T < Tc µ − a < 0 N T T 0 = ii c a T = Tc a = 0 T c a > 0 T > Tc . 2 µ + + 3 2 2 1 J J T ( ) 0 = b ( ) C 2 2 + 10 1 M J 0

  25. T 1 T 1 T 2 T 2 M 2 T 3 M 2 T 3 T 4 T 4 T c T c ⎛ ⎞ ⎛ ⎞ H H H H − + − ⎜ ⎟ ⎜ ⎟ T T 4 3 T 5 T 5 ⎝ ⎠ ⎝ ⎠ M M M M 3 4 = c c T c ⎛ ⎞ H H − ⎜ ⎟ 2 2 ⎝ ⎠ M s M M M 4 3 s T 1 < T 2 < T 3 < T c < T 4 < T 5 . 1/χ 0 H/M 3 H/M c H/M 4 H/M 120 400 K ThFe 11 C 1.5 100 420 K 80 M 2 ( µ B /f.u.) 2 440 K 60 Arrott plot 40 20 0 O. Isnard, V. Pop, K.H.J. Buschow, 0 0.2 0.4 0.6 0.8 1 J. Magn. Magn. Mat. 256 (2003) 133 µ 0 H/M (T*f.u./ µ B )

  26. M 1 / χ M s (0) C χ = − θ T T c θ T T → 0K T > T c µ = g µ + 1 M s (0) = g J µ B J 0 J ( J ) eff B p p For the rare earth (Gd for example): J 0 =J p For 3d transition metals (Fe, Co, Ni…), the orbital moment is blocked by crystalline field: T → 0K T > T c S p = S > 1 µ = g µ + 1 r M s (0) = g J µ B S 0 S ( S ) eff B p p 0

  27. r = 1 local moment limit r → ∞ total delocalisation limit Gd 1 Fe 1 Co 1 ThFe 11 C 1.5 Fe 3 C 3 HoCo 4 Si 4 YCo 3 B 2 2 5 → ∞ r 1.00 1.01 1.32 1.5 1.69 2.03 1 P.R. Rhodes, E.P. Wolfarth, Proc. R. Soc. 273 (1963) 347. 2 O. Isnard, V. Pop, K.H.J. Buschow, J. Magn. Magn. Mat. 256 (2003) 133 3 D. Bonnenberg, K.A. Hempel, H.P.J. Wijn, Landolt-B.orsntein new series, Vol. III, 19a, Springer, Berlin, 1986, p. 142. 4 O. Isnard, N. Coroian, V. Pop (unpublished) 5 R. Ballou, E . Burzo, and V. Pop, J. Magn. Magn. Mat. 140-144 (1995) 945.

  28. M If there are some ferromagnetic impurity Paramagnetic sample = χ + M H cM s M χ = H H

  29. M If there are some ferromagnetic impurity Paramagnetic sample = χ + M H cM s M M M χ = = χ + s c H H H H M H χ 1 H

  30. C χ = T + θ σ 1 1 T = + − χ χ − θ C T ' 1/ χ 0 C χ = T C − θ χ = T θ θ θ T N T c T c T

  31. axial symmetry : 2 E a ≈ θ K 1 sin K1 < 0 K 1 > 0 [100] H H c M 1 [001] H 0,8 H a YCo 5 ∆ M 1 - [110] H m H c [001] [111] 0,6 . A 6 0 1 0,4 , M H a 0,2 [100] [110] 0 H 0 4 8 12 16 6 -1 H, 10 A.m

  32. T < T N , antiferromagnetic materials, χ ⊥ > χ ⎢⎢ Density of energy in magnetic field H, low anisotropy energy E = - χµ 0 H 2 /2 spin – flop transition M H M a M b (z) M a H (z) M b H (a) (z) (b) M a M b 0 H = H H H c a ex E. Du Trémolet de Lacheisserie (editor), Magnetisme, Presses Universitaires de Grenoble, 1999

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend