what lattice qcd can do for experiment
play

What Lattice QCD can do for experiment Christine Davies - PowerPoint PPT Presentation

What Lattice QCD can do for experiment Christine Davies University of Glasgow HPQCD collaboration Birmingham Nov 2014 QCD is a key part of the Standard Model but quark confinement is a complication/interesting feature. Cross-sections


  1. What Lattice QCD can do for experiment Christine Davies University of Glasgow HPQCD collaboration Birmingham Nov 2014

  2. QCD is a key part of the Standard Model but quark confinement is a complication/interesting feature. Cross-sections calculated at CDF high energy using QCD pert. th. with ~3% errors. Also parton distribution function and hadronisation uncertainties. But (some) properties of hadrons much more accurately known and calculable in lattice QCD - can test SM and determine parameters very accurately (1%).

  3. Weak decays probe meson structure and quark couplings   V ud V us V ub V us π ! l ν K ! l ν B ! π l ν     K ! π l ν     V cd V cs V cb ν     D ! l ν D s ! l ν B ! Dl ν     D ! π l ν D ! Kl ν   K   V td V ts V tb   h B d | B d i h B s | B s i Br ( M → µ ν ) ∝ V 2 ab f 2 M CKM matrix Expt = CKM x theory(QCD) Need precision lattice QCD to get accurate CKM elements to test Standard Model (e.g. is CKM unitary?). If V ab known, compare lattice to expt to test QCD

  4. Lattice QCD = fully nonperturbative, based on Path Integral formalism Z Z basic L QCD d 4 x ) D U D ψ D ψ exp( − integral • Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of u, d, s (+ c) sea quarks) • Calculate averaged “hadron correlators” from valence q props. • Fit as a function of time to obtain masses and simple matrix elements a • Determine and fix to get m q results in physical units. • extrapolate to a = 0 , m u,d = phys for real world **now at m phys ** a

  5. Hadron correlation functions (‘2point functions’) give masses and decay constants. T large X h 0 | H † ( T ) H (0) | 0 i = A n e − m n T → A 0 e − m 0 T n masses of all QCD H H hadrons with quantum | h 0 | H | n i | 2 = f 2 n m n numbers of H A n = 2 m n 2 decay constant parameterises amplitude to annihilate - a property of the meson calculable in QCD. Relate to experimental decay rate. 1% accurate experimental info. for f and m for many mesons! Need accurate determination from lattice QCD to match

  6. Darwin@Cambridge, part of STFC’s HPC facility for theoretical particle physics www.dirac.ac.uk and astronomy - DiRAC II Allows us to calculate quark propagators rapidly and store them for flexible re-use. State-of-the-art commodity cluster: 9600 Intel Sandybridge cores, infiniband interconnect, fast switch and 2 Pbytes storage

  7. Example parameters for calculations now being done with ‘staggered’ quarks. “2nd generation” lattices inc. c MILC HISQ, 2+1+1 quarks in sea 0.14 mass HISQ = Highly of u,d improved 0.12 quarks staggered quarks - very accurate 0.1 discretisation 2 / GeV 2 E.Follana et al, 0.08 HPQCD, hep-lat/ 0610092. m � 0.06 m u , d ≈ m s / 10 0.04 real 0.02 m u , d ≈ m s / 27 world 0 Volume: m π 0 = 0 0.005 0.01 0.015 0.02 0.025 0.03 135 MeV m π L > 3 a 2 / fm 2

  8. Example (state-of-the-art) calculation Extract meson mass and pion at physical m u/d amplitude=decay constant from correlator for multiple correlator(T) 0.1 lattice spacings and m u/d. Very high statistics 0.01 Extrapolation in a 0 20 40 60 80 100 T Convert decay constant to GeV units using to w 0 fix relative lattice spacing. Very small discretisation errors. = m l /m s R. Dowdall et al, HPQCD, 1303.1670.

  9. The gold-plated meson spectrum 12 expt 2011 � b2 fix params h b (2P) 2012 � b1 (2P) postdcns � '' � b0 predcns ' � ' � b2 10 � b � b1 (1P) 2008 � b � (1D) HPQCD � h b (1P) � b0 1112.2590 MESON MASS (GeV/c 2 ) 1207.5149; 2014 8 0909.4462 *' ' B c B c * B c0 * B c B c 6 * B s B s 2005 B * B � ' � c2 4 ' � c1 � c h c � c0 HPQCD � c J/ � 1008.4018 * D s D s 2 error 3 MeV D - em effects important! K � � 0 older predcns: I. Allison et al, hep-lat/0411027, A. Gray et al, hep-lat/0507013

  10. Lattice QCD is best method to determine quark masses m q,latt determined very accurately by fixing a meson mass to be correct. e.g. for m c fix M η c *masses Issue is conversion to the scheme MS important for Higgs cross- • Direct method sections* m MS ( µ ) = Z ( µa ) m latt Calculate Z perturbatively or partly nonperturbatively. • Indirect methods: (after tuning ) match a quantity m latt from lattice QCD to contnm pert. th. in terms of mass MS e.g. q 2 -derivative moments of current-current correlators (vac. pol.function) for heavy α 3 quarks known through . J J s Calc. on lattice as time-moments of ‘local’ meson correlation function Chetyrkin et al, 0907.2110 HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285

  11. Most accurate to use pseudoscalar correlator time-moments: ( am c ) 2 < 0 | j 5 ( ⌦ G ( t ) = a 6 � x, t ) j 5 (0 , 0) | 0 > J J ⇤ x ratio to results with no � ( t/a ) n G ( t ) G n = gluon field improves disc. t t errors R n,latt = G 4 /G (0) n = 4 4 = am η c ( G n /G (0) n ) 1 / ( n − 4) n = 6 , 8 , 10 . . . 2 am c extrapolate first 4 moments to a=0 and fit to contnm pert. th. gives m ( µ ) AND α s ( µ ) From 2+1 configs: m b ( m b ) = 4 . 164(23)GeV m c ( m c ) = 1 . 273(6)GeV α s ( M z ) = 0 . 1183(7) *new* 2+1+1 results agree:1408.4169

  12. Improvement in result 1 . 10 m c ( 3GeV ) 1 . 05 clear as more orders 1 . 00 added in contnm pert. 0 . 95 theory. 0 . 90 0 . 130 HPQCD,1408.4169 0 . 125 α MS ( M Z ) 0 . 120 0 . 115 0 . 110 HPQCD NRQCD JJ 0 1 2 3 1408.5768 N HPQCD HISQ JJ n f = 3 Different lattice methods HPQCD HISQ JJ n f = 4 1408.4169 for m b agree. HPQCD NRQCD E 0 Weighted average (grey 1302.3739 band): 4.178(14) GeV ETMC ratio 1311.2837 1404:0319: impact on accuracy of H → bb 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 m b ( m b , n f = 5 )( GeV )

  13. Quark mass ratios HPQCD: 0910.3102; 1004.4285,1408.4169 Obtained directly from lattice QCD if same quark formalism is used for both quarks. m q 1 ,MS ( µ ) � m q 1 ,latt ⇥ = Ratio is at same and for same n f . m q 2 ,MS ( µ ) µ m q 2 ,latt a =0 Not possible any other way ... m b /m c m c /m s *new* 2+1+1 with 1 . 4 physical u.d: m 0 h m η c / ( m 0 c m η h ) 1 . 3 1 . 2 1 . 1 1 . 0 0 . 9 0 . 8 m η c m η b 4 6 8 m η h (GeV) m b /m c = 4 . 51(4) m b /m s = 52 . 90(44) m c /m s = 11 . 652(65) 6 = 3 m τ /m µ allows 1% accuracy in m s (94.0(6) MeV)

  14. Meson decay constants Parameterises hadronic information needed Γ ∝ f 2 for annihilation rate to W or photon: Experiment : weak decays 0.7 : em decays Lattice QCD : predictions DECAY CONSTANT (GEV) 0.6 HPQCD: postdictions 1207.0994 HPQCD: 0.5 HPQCD: 1302.2644 1311.6669 HPQCD: 0.4 HPQCD: 1312.5264 1303.1670 HPQCD, 0.3 1408.5768 � *NEW* 0.2 HPQCD, 1208.2855 0.1 * � � � � D s D s B s B c K D B J/ � � � � 0 Aim for same ‘overview’ as for masses. Note different scale.

  15. Constraining new physics with lattice QCD V us /V ud * results at physical u/d quark masses* f K /f π HISQ 2+1+1 configs 0 . 164 ` 0 . 162 f K (GeV) 0 . 160 0 . 158 Annihilation of to W K/ π 0 . 156 allows CKM element determination given decay 0 . 150 constants from lattice QCD 0 . 145 f π (GeV) Γ ( K + → ⇤� ) expt for 0 . 140 Γ ( ⇥ + → ⇤� ) 0 . 135 | V us | f K + 0 . 130 | V ud | f π + = 0 . 27598(35) Br( K + ) (25) EM 0 . 05 0 . 10 0 . 15 0 . 20 f K + m 2 π / ( 2 m 2 K − m 2 π ) R.Dowdall et from lattice gives CKM al, HPQCD: = m u,d /m s f π + 1303.1670

  16. (note: by 0.3%) f K + < f K Comparison of results good agreement from different formalisms * results at physical u/d quark masses* f K + /f � + n f =2+1+1 HPQCD, 1303.1670 f K + HISQ f π + = 1 . 1916(21) MILC, 1301.5855 HISQ ETMC, Lattice2013 twisted mass | V us | | V ud | = 0 . 23160(29) expt (21) EM (41) latt f K /f � n f =2+1 BMW, 1001.4692 clover | V us | = 0 . 22564 HPQCD, 0706.1726 HISQ LvW, 1112.4861 (28) Br (20) EM (40) latt (5) V ud domain-wall MILC, 1012.0868 asqtad 1 − | V ud | 2 − | V us | 2 − | V ub | 2 RBC/UKQCD 1011.0892 domain-wall = − 0 . 00009(51) 1.15 1.17 1.19 1.21 1.23 1.25 β V ud from nuclear decay now needs improvement for unitarity test!

  17. B meson decay constants: results from NRQCD b and physical u/d quarks HPQCD: R Dowdall et al, 1302.2644. 1 . 26 Set 1 Set 5 MILC HISQ 2+1+1 Set 2 Set 6 1 . 24 Set 3 Set 7 configs with u/d down to √ M B ) Set 4 Set 8 1 . 22 � M B s ) / ( f B physical values + 1 . 20 improved NRQCD 1 . 18 ( f B s meson mass difference 1 . 16 correct to 2% 1 . 14 Physical point 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 = m l /m s M 2 π / M 2 100 η s Set 3 Set 8 95 Set 6 PDG B s to B decay constant 90 M B s − M B (MeV) 85 ratio accurate to 0.6% - 80 since Z factors cancel. 75 Separate decay 70 65 constants to 2% 60 0 . 000 0 . 005 0 . 010 0 . 015 0 . 020 0 . 025 a 2 (fm)

  18. 185(3) 225(3) averages B, B s decay constant world averages 2014 f B s f B f B,expt PDG av. branching fraction + unitarity Vub f B + HPQCD NRQCD 1302.2644 f B 0 u, d, s, c sea HPQCD NRQCD 1202.4914 HPQCD HISQ 1110.4510 FNAL/MILC 1112.3051 u, d, s sea u, d sea ETMC Lattice2013 ALPHA 1210.7932 NOTE: f Bs < f Ds (248 MeV) 150 175 200 225 250 275 300 but by much less than LO f B x / MeV HQET expects

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend