studies of b quark decays using experiment plus lattice
play

Studies of b quark decays using experiment plus lattice QCD Matthew - PowerPoint PPT Presentation

Studies of b quark decays using experiment plus lattice QCD Matthew Wingate DAMTP, University of Cambridge Particle Physics Seminar, University of Birmingham, 7 February 2018 Outline Quark flavour & Lattice QCD DiRAC facility


  1. Studies of b quark decays using experiment plus lattice QCD Matthew Wingate DAMTP, University of Cambridge Particle Physics Seminar, University of Birmingham, 7 February 2018

  2. Outline • Quark flavour & Lattice QCD • DiRAC facility • Example: |V cb | from B → D* l ν 2

  3. Quark Flavour & Lattice QCD

  4. Motivation • Precision predictions & measurements of quark flavour interactions • Is the Standard Model description of EWSB complete? • If not, quark flavour measurements constrain models of new physics • Experimental measurements of hadron decays: increasing precision, new modes • Precision QCD calculations required in order to make inferences about quark interactions 4

  5. Quark flavour physics CKM matrix   V ud V us V ub = CKM Fitter V cd V cs V cb   V td V ts V tb  1 − λ 2 / 2 A λ 3 ( ρ − i η )  λ  + O ( λ 4 ) 1 − λ 2 / 2 A λ 2 − λ  A λ 3 (1 − ρ − i η ) − A λ 2 1 e + K → ⇡`⌫ B → ⇡`⌫ W + ν e B ( s ) → D ( ∗ ) ( s ) `⌫ D → ⇡`⌫ D → K `⌫ B 0 B 0 ( s ) − ¯ B c → J/ `⌫ d ′ ( s ) u tree 5

  6. CKM matrix from Higgs couplings � u � i � Q i u i d i RH SU(2) singlets LH SU(2) doublets L = d � i R R L Interact with gauge bosons in covariant derivative ¯ R + ¯ Q i D Q i u i D u i d i D d i L i / R i / R i / L quark = L + ¯ R J µ, + u � i L γ µ d � i Gives rise to weak current weak = ¯ L The coupling to the Higgs field is not apparently diagonal in generation � � √ � ij L � d j La � ab � † b u j d ¯ u ¯ Q i R + � ij Q i L quark , φ = 2 R + h . c . − Fields may be transformed to mass basis � � � d ¯ m i d i L d i R + m i u i L u i � � L quark , φ | vev = u ¯ R + h . c . − i Showing the weak current allows mixing between generations J µ, + L γ µ V ij CKM d j u i weak = ¯ L 6

  7. CKM matrix from Higgs couplings � u � i � Q i u i d i RH SU(2) singlets LH SU(2) doublets L = d � i R R L Interact with gauge bosons in covariant derivative ¯ R + ¯ Q i D Q i u i D u i d i D d i L i / R i / R i / L quark = L + ¯ R J µ, + u � i L γ µ d � i Gives rise to weak current weak = ¯ L The coupling to the Higgs field is not apparently diagonal in generation � � √ � ij L � d j La � ab � † b u j d ¯ u ¯ Q i R + � ij Q i L quark , φ = 2 R + h . c . − Fields may be transformed to mass basis � � � d ¯ m i d i L d i R + m i u i L u i � � L quark , φ | vev = u ¯ R + h . c . − i Showing the weak current allows mixing between generations J µ, + L γ µ V ij CKM d j u i weak = ¯ L 6

  8. CKM matrix from Higgs couplings � u � i � Q i u i d i RH SU(2) singlets LH SU(2) doublets L = d � i R R L Interact with gauge bosons in covariant derivative ¯ R + ¯ Q i D Q i u i D u i d i D d i L i / R i / R i / L quark = L + ¯ R J µ, + u � i L γ µ d � i Gives rise to weak current weak = ¯ L The coupling to the Higgs field is not apparently diagonal in generation � � √ � ij L � d j La � ab � † b u j d ¯ u ¯ Q i R + � ij Q i L quark , φ = 2 R + h . c . − Fields may be transformed to mass basis � � � d ¯ m i d i L d i R + m i u i L u i � � L quark , φ | vev = u ¯ R + h . c . − i Showing the weak current allows mixing between generations J µ, + L γ µ V ij CKM d j u i weak = ¯ L 6

  9. CKM matrix from Higgs couplings � u � i � Q i u i d i RH SU(2) singlets LH SU(2) doublets L = d � i R R L Interact with gauge bosons in covariant derivative ¯ R + ¯ Q i D Q i u i D u i d i D d i L i / R i / R i / L quark = L + ¯ R J µ, + u � i L γ µ d � i Gives rise to weak current weak = ¯ L The coupling to the Higgs field is not apparently diagonal in generation � � √ � ij L � d j La � ab � † b u j d ¯ u ¯ Q i R + � ij Q i L quark , φ = 2 R + h . c . − Fields may be transformed to mass basis � � � d ¯ m i d i L d i R + m i u i L u i � � L quark , φ | vev = u ¯ R + h . c . − i Showing the weak current allows mixing between generations J µ, + L γ µ V ij CKM d j u i weak = ¯ L 6

  10. CKM matrix from Higgs couplings � u � i � Q i u i d i RH SU(2) singlets LH SU(2) doublets L = d � i R R L Interact with gauge bosons in covariant derivative ¯ R + ¯ Q i D Q i u i D u i d i D d i L i / R i / R i / L quark = L + ¯ R J µ, + u � i L γ µ d � i Gives rise to weak current weak = ¯ L The coupling to the Higgs field is not apparently diagonal in generation � � √ � ij L � d j La � ab � † b u j d ¯ u ¯ Q i R + � ij Q i L quark , φ = 2 R + h . c . − Fields may be transformed to mass basis � � � d ¯ m i d i L d i R + m i u i L u i � � L quark , φ | vev = u ¯ R + h . c . − i Showing the weak current allows mixing between generations J µ, + L γ µ V ij CKM d j u i weak = ¯ L 6

  11. Experiment Models Role of Lattice QCD 7 Illustration from I. Shipsey, Nature 427, 591 (2004)

  12. Lattice QCD Experiment Models Role of Lattice QCD 7 Illustration from I. Shipsey, Nature 427, 591 (2004)

  13. Lattice QCD • Use methods of effective field theory and renormalization to turn a quantum physics problem into a statistical physics problem • Quarks propagating through strongly interacting QCD glue + sea of quark-antiquark bubbles • Numerically evaluate path integrals using Monte Carlo methods: importance sampling & correlation functions • Numerical challenge: solving M x = b where M is big and has a diverging condition number as am q ➙ 0 (vanishing lattice spacing × light quark mass) 8

  14. Lattice QCD in a nutshell QFT : Imaginary-time path integral ⟨ J ( z ′ ) J ( z ) ⟩ = 1 � [ d ψ ][ d ¯ ψ ][ dU ] J ( z ′ ) J ( z ) e − S E Z SFT : Sum over all microstates ⟨ J ( z ′ ) J ( z ) ⟩ = 1 � J ( z ′ ) J ( z ) e − β H � Z Tr Use the same numerical methods! Monte Carlo Calculation : Find and use field “configurations” which dominate the integral/sum 9

  15. Lattice QCD in a nutshell Gluonic expectation values 1 � ψ ][ dU ] Θ [ U ] e − S g [ U ] − ¯ [ d ψ ][ d ¯ ψ Q [ U ] ψ ⟨ Θ ⟩ = Z 1 � [ dU ] Θ [ U ] det Q [ U ] e − S g [ U ] = Z Fermionic expectation values � � [ dU ] δ ζ Γ δ ζ Q − 1 [ U ] ζ det Q [ U ] e − S g [ U ] δζ e − ¯ ⟨ ¯ � ψ Γ ψ ⟩ = δ ¯ � � ζ , ¯ ζ → 0 10

  16. Lattice QCD in a nutshell Gluonic expectation values 1 � ψ ][ dU ] Θ [ U ] e − S g [ U ] − ¯ [ d ψ ][ d ¯ ψ Q [ U ] ψ ⟨ Θ ⟩ = Z 1 � [ dU ] Θ [ U ] det Q [ U ] e − S g [ U ] = Z Fermionic expectation values Probability weight � � [ dU ] δ ζ Γ δ ζ Q − 1 [ U ] ζ det Q [ U ] e − S g [ U ] δζ e − ¯ ⟨ ¯ � ψ Γ ψ ⟩ = δ ¯ � � ζ , ¯ ζ → 0 10

  17. Lattice QCD in a nutshell Gluonic expectation values 1 � ψ ][ dU ] Θ [ U ] e − S g [ U ] − ¯ [ d ψ ][ d ¯ ψ Q [ U ] ψ ⟨ Θ ⟩ = Z 1 � [ dU ] Θ [ U ] det Q [ U ] e − S g [ U ] = Z Fermionic expectation values Probability weight � � [ dU ] δ ζ Γ δ ζ Q − 1 [ U ] ζ det Q [ U ] e − S g [ U ] δζ e − ¯ ⟨ ¯ � ψ Γ ψ ⟩ = δ ¯ � � ζ , ¯ ζ → 0 Determinant in probability weight difficult 1) Requires nonlocal updating; 2) Matrix becomes singular 10

  18. Lattice QCD in a nutshell Gluonic expectation values 1 � ψ ][ dU ] Θ [ U ] e − S g [ U ] − ¯ [ d ψ ][ d ¯ ψ Q [ U ] ψ ⟨ Θ ⟩ = Z 1 � [ dU ] Θ [ U ] det Q [ U ] e − S g [ U ] = Z Fermionic expectation values Probability weight � � [ dU ] δ ζ Γ δ ζ Q − 1 [ U ] ζ det Q [ U ] e − S g [ U ] δζ e − ¯ ⟨ ¯ � ψ Γ ψ ⟩ = δ ¯ � � ζ , ¯ ζ → 0 Determinant in probability weight difficult 1) Requires nonlocal updating; 2) Matrix becomes singular Partial quenching = different mass for valence than for sea Q − 1 det Q 10

  19. Lattice QCD h Φ π ( z ) V µ ( y ) Φ B ( x ) i = 1 Z Z Z ψ ][ dU ] Φ π ( z ) V µ ( y ) Φ B ( x ) e − S [ ψ , ¯ [ d ψ ][ d ¯ ψ ,U ] Z • Imaginary time formulation: path integrands real, non-negative • Discrete lattice points: regulates field theory • Sharply peaked path integrand: permits importance sampling Systematic error Controllable limit Theory Chiral pert. th. L � 1 /m π Lattice volume Brute force a � 1 / Λ QCD Lattice spacing Symanzik EFT Chiral pert. th. m π � m ρ , 4 π f π Light quark mass Brute force m Q � 1 /a NRQCD, HQET Heavy quark mass m Q < 1 /a Extra-fine, extra-improvement m Q ≈ 1 /a Fermilab

  20. Meson mass splittings CTH Davies, [HPQCD Collaboration website] 12

  21. Decay constants CTH Davies, [HPQCD Collaboration website] 13

  22. Rare b decays Flavour changing neutral decays W t b s s b W W ν t γ , Z ℓ ℓ penguin box B → K ∗ ` + ` − B s → �` + ` − Horgan et al., (HPQCD) arXiv:1310.3722, arXiv:1310.3887 14

  23. LQCD & DiRAC

  24. UKQCD consortium 24 faculty at 8 UK institutions • Membership/Leadership in several • international collaborations (e.g. HPQCD, RBC-UKQCD, HadSpec, QCDSF, FastSum) Image credit: CIA World Factbook Broad range of physics: quark • flavour, hadron spectrum, hot/ dense QCD; BSM theories of EWSB, dark matter Widespread impact: LHC, BES-III, • Belle, JLab, J-PARC, FAIR, RHIC, NA62 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend