web page for further information http tbi univie ac at pks
play

Web-Page for further information: http://www.tbi.univie.ac.at/~pks - PowerPoint PPT Presentation

Perspectives of Molecular Life Sciences on the Crossroads of Mathematics, Computation, and Biology Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Workshop


  1. Perspectives of Molecular Life Sciences on the Crossroads of Mathematics, Computation, and Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Workshop „Bridging Mathematics and Life Sciences“ CEMM-RICAM, Wien, 16.02.2012

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks Peter Schuster. Is there a Newton of the blade of grass? The complex relation between mathematics, physics, and biology. Complexity 16 / 6 : 5-9, 2011. Peter Schuster. Mathematical modeling of evolution. Solved and open problems. Theory in Biosciences 130 :71-89, 2011

  3. 1. Prologue: Mathematics and biology 2. Modeling specific biological systems 3. Networks and evolution 4. Perspectives

  4. 1. Prologue: Mathematics and biology 2. Modeling specific biological systems 3. Networks and evolution 4. Perspectives

  5. Immanuel Kant. 1786. Metaphysical Foundations of Science: … I maintain only that in every special doctrine of nature only so much science proper can be found as there is mathematics in it. … Immanuel Kant, 1724-1804 Immanuel Kant. 1786. Metaphysische Anfangsgründe der Naturwissenschaft: …….Ich behaupte nur, daß in jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könnte, als darin Mathematik anzutreffen ist. ……

  6. Immanuel Kant. 1790. Critique of Judgment, chapter 85: … there will never be a Newton of the blade of grass, because human science will never be able to explain how a living being can originate from inanimate matter. … Immanuel Kant, 1724-1804 Immanuel Kant. 1790. Kritik der Urteilskraft, Kap.85: …….und zwar so gewiß, daß man dreist sagen kann, es ist für Menschen ungereimt …… zu hoffen, daß noch etwa dereinst ein Newton aufstehen könnte, der auch nur die Erzeugung eines Grashalms nach Natur- gesetzen, die keine Absicht geordnet hat, begreiflich machen werde, sondern man muß diese Einsicht den Menschen schlechterdings absprechen. ……

  7. 1953 molecular biology 1958 protein sequencing 1977 DNA sequencing 1978 bioinformatics 1986 genomics 1997 proteomics 1997 functional genomics 2000 systems biology

  8. synthesis of urea synthetic biology and biotechnology 1828 from ammonium cyanate Ian Wilmut and Keith campbell Dolly, the sheep 1996 – 2003 1996 gave birth to Bonnie, Sally & Rosie, Lucy & Darcy & Cotton

  9. synthetic biology and biotechnology 2007 Yiannis N. Kaznessis. Models for synthetic biology. BMC Systems Biology 1 :e47, 2007.

  10. …… no new principle will declare itself from below a heap of facts. …… Sir Peter Brian Medawar, 1915 - 1987 Torbjörn Fagerström, Peter Jagers, Peter Schuster, and Eörs Szathmáry. Biologists put on mathematical glasses. Science 271 :2039-240, 1996.

  11. …… the prime intellectual task of the future lies in constructing an appropriate theoretical framework for biology …… theoretical biology has a bad name because of its past …… I have decided to forget and forgive the past and call it – the badly required new discipline – theoretical biology. Sydney Brenner, 1927 - Sydney Brenner. Theoretical biology in the third millenium. Phil.Trans.Roy.Soc.London B 354 :1963-1965, 1999

  12. Nothing makes sense in biology except in the light of evolution, … Theodosius Dobzhansky, 1900 - 1975 Theodosius Dobzhansky. Biology, molecular and organismic. American Zoologist 4 :443-452, 1974.

  13. 1. Prologue: Mathematics and biology 2. Modeling specific biological systems 3. Networks and evolution 4. Perspectives

  14. Turing patterns in embryological morphogenesis: „…… although reaction-diffusion theory provides a very elegant mechanism for segmentation, nature seems to have chosen a Philip Maini, 1959 - Alan M.Turing, 1912 - 1954 much less elegant way of doing it.“ Philip K. Maini, Kevin J. Painter, and Helene Nguyen Phong Chau. Spatial pattern formation in chemical and biological systems. J.Chem.Soc., Fraday Trans . 93 :3602-3610, 1997.

  15. Synthetic biology Analysis of synthetic genetic network The repressilator Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regulators. Nature 403 :335-338, 2000.

  16. An example analyzed and simulated by MiniCellSim Stefan Müller, Josef Hofbauer, Lukas Endler, Christoph Flamm, Stefanie Widder and Peter Schuster. A generalized model of the repressilator. J. Math. Biol. 53 :335-338, 2006.

  17. Stable stationary state Hopf bifurcation Increasing Limit cycle oscillations inhibitor strength Bifurcation to May-Leonhard system Fading oscillations caused by a stable heteroclinic orbit

  18. P roteins mRNAs 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 1e+ 07 2e+ 07 3e+ 07 4e+ 07 5e+ 07 0 1e+ 07 2e+ 07 3e+ 07 4e+ 07 5e+ 07 0.3 0.08 0.25 0.06 0.2 0.15 0.04 0.1 0.02 0.05 0 0 0 1e+ 07 2e+ 07 3e+ 07 4e+ 07 5e+ 07 0 1e+ 07 2e+ 07 3e+ 07 4e+ 07 5e+ 07 The repressilator limit cycle

  19. P 1 start start P 3 P 2 The repressilator limit cycle

  20. P roteins mR NAs 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 2e+ 08 4e+ 08 6e+ 08 8e+ 08 0 2e+ 08 4e+ 08 6e+ 08 8e+ 08 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 2e+ 08 4e+ 08 6e+ 08 8e+ 08 0 2e+ 08 4e+ 08 6e+ 08 8e+ 08 The repressilator heteroclinic orbit

  21. P 1 Bifurcation from limit cycle  2 <0 to stable heteroclinic orbit at  2  2 =0  1 P 2 Stable heteroclinic orbit  2 >0  2  1 P 2 Unstable heteroclinic orbit P 2 P 3 The repressilator heteroclinic orbit

  22. Neurobiology Propagation of a nerve pulse along the axon A single neuron signaling to a muscle fiber

  23. B A Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  24. 1 d V = − − − − − − 3 4 ( ) ( ) ( ) I g m h V V g n V V g V V Na Na K K l l d t C M dm = α − − β ( 1 ) m m m m dt dh Hodgkin-Huxley ODEs = α − − β ( 1 ) h h h h dt dn = α − − β ( 1 ) n n n n dt Simulation of space independent Hodgkin-Huxley equations: Voltage clamp and constant current Alan L. Hodgkin, Andrew F. Huxley. A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. Journal of Physiology 117 :500–544, 1952.

  25. Gating functions of the Hodgkin-Huxley equations

  26. Temperature dependence of the Hodgkin-Huxley equations

  27. ∂ ∂ 2 1 V V = + − + − + − π 3 4 ( ) ( ) ( ) 2 C g m h V V g n V V g V V r L ∂ ∂ 2 Na Na K K l l R x t ∂ m = α − − β ( 1 ) m m Hodgkin-Huxley PDEquations ∂ m m t ∂ h = α − − β ( 1 ) Travelling pulse solution: V ( x,t ) = V (  ) with h h ∂ h h t  = x +  t ∂ n = α − − β ( 1 ) n n ∂ n n t Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  28. [ ] 2 1 d V d V = θ + − + − + − π 3 4 ( ) ( ) ( ) 2 C g m h V V g n V V g V V r L ξ ξ 2 M Na Na K K l l R d d Hodgkin-Huxley PDEquations d m θ = α − − β ( 1 ) m m ξ m m d Travelling pulse solution: V ( x,t ) = V (  ) with d h θ = α − − β ( 1 ) h h  = x +  t ξ h h d d n θ = α − − β ( 1 ) n n ξ n n d Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  29. 100 50 V [mV] 0 T = 18.5 C; θ = 1873.33 cm / sec -50 1 2 3 4 5 6  [cm] Paul E. Phillipson and Peter Schuster. Analytical dynamics of neuron pulse propagation. International Journal of Bifurcation and Chaos 16 :3605-3616, 2006. - ″ - , - ″ - . A comparative study of the Hodgkin-Huxley and the Fitzhugh-Nagumo models of neuron pulse propagation. International Journal of Bifurcation and Chaos 15 :3851-3866, 2005.

  30. T = 18.5 C; θ = 1873.3324514717698 cm / sec

  31. T = 18.5 C; θ = 1873.3324514717697 cm / sec

  32. 40 30 20 ] V m [ 10 V 0 -10 6 8 10 12 14 16 18  [cm] T = 18.5 C; θ = 544.070 cm / sec

  33. Propagating wave solutions of the Hodgkin-Huxley equations

  34. 1. Prologue: Mathematics and biology 2. Modeling specific biological systems 3. Networks and evolution 4. Perspectives

  35. Sewall Wright. 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution . In: D.F.Jones, ed. Int. Proceedings of the Sixth International Congress on Genetics. Vol.1, 356-366. Ithaca, NY. Sewall Wrights fitness landscape as metaphor for Darwinian evolution

  36. The paradigm of structural biology

  37. RNA sequence Biophysical chemistry: thermodynamics and kinetics RNA folding : Structural biology, spectroscopy of biomolecules, understanding Empirical parameters molecular function RNA structure of minimal free energy Sequence, structure, and design

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend