web page for further information http www tbi univie ac
play

Web-Page for further information: http://www.tbi.univie.ac.at/~pks - PowerPoint PPT Presentation

Designing RNA Structure and Function A Toolbox for Synthetic Biology Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Synthetic Biology From understanding to


  1. Designing RNA Structure and Function A Toolbox for Synthetic Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Synthetic Biology – From understanding to application DKFZ-Heidelberg, 09.– 11.12.2013

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. Prologue The goals of synthetic biology

  4. A general method for genetically encoding unnatural amino acids in live cells. Qian Wang, Angela R. Parrish, Lei Wang. Expanding the genetic code for biological studies. Chemistry & Biology 16 :323-336, 2009. Lei Wang, Peter G. Schultz. Expanding the genetic code. Angew.Chem.Int.Ed. 44:34-66, 2005.

  5. 1. One RNA sequence – one structure 2. Many RNA sequences – one structure 3. One RNA sequence – many structures 4. RNA switches

  6. 1. One RNA sequence – one structure 2. Many RNA sequences – one structure 3. One RNA sequence – many structures 4. RNA switches

  7. GCGGA  UUGCACCA one sequence  one structure  function The paradigm of structural biology

  8. 5' - end N 1 O CH 2 O GCGGAU UUA GCUC AGUUGGGA GAGC CCAGA G CUGAAGA UCUGG AGGUC CUGUG UUCGAUC CACAG A AUUCGC ACCA 5'-end 3’-end N A U G C k = , , , OH O N 2 O P O CH 2 O Na  O O OH N 3 O P O CH 2 O Na  O Definition of RNA structure O OH N 4 O P O CH 2 O Na  O O OH 3' - end O P O Na  O

  9. Criterion: Minimum free energy (mfe) Rules: _ ( _ ) _  { AU , CG , GC , GU , UA , UG } A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

  10. RNA sequence Biophysical chemistry: thermodynamics and kinetics RNA folding : Structural biology, spectroscopy of biomolecules, Vienna RNA-Package understanding Empirical parameters molecular function Version 2.0 http://www.tbi.univie.ac.at RNA structure of minimal free energy Sequence, structure, and design

  11. RNA folding into secondary structures Michael S. Waterman, T. F. Smith. 1978. RNA secondary structures: A complete mathematical analysis. Math.Biosci . 42 :257-266. Ruth Nussinov, A. B. Jacobson. 1980. Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc.Natl.Acad.Sci . USA 77 :6309-6313. Michael Zuker, P. Stiegler. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9 :133-148. Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer, Manfred Tacker, Peter Schuster. 1994. Fast folding and comparison of RNA secondary structures. Monath. Chem . 125 :167-188.

  12. Conventional definition of RNA secondary structures

  13. Restrictions on physically acceptable mfe-structures:   3 and   2

  14. RNA sequence Iterative determination of a sequence for the Inverse folding of RNA : given secondary RNA folding : structure Biotechnology, Structural biology, design of biomolecules spectroscopy of with predefined Inverse Folding biomolecules, structures and functions Algorithm understanding molecular function Vienna RNA-Package RNA structure Version 2.0 of minimal free energy http://www.tbi.univie.ac.at Sequence, structure, and design

  15. Inverse folding algorithm I 0  I 1  I 2  I 3  I 4  ...  I k  I k+1  ...  I t S 0  S 1  S 2  S 3  S 4  ...  S k  S k+1  ...  S t I k+1 = M k (I k ) and  d S (S k ,S k+1 ) = d S (S k+1 ,S t ) - d S (S k ,S t ) < 0 M ... base or base pair mutation operator d S (S i ,S j ) ... distance between the two structures S i and S j ‚Unsuccessful trial‘ ... termination after n steps

  16. Intermediate compatible sequences Initial trial sequences Stop sequence of an unsuccessful trial Intermediate compatible sequences Target sequence Target structure S k Approach to the target structure S k in the inverse folding algorithm

  17. RNA inverse folding: Secondary structures  sequences Mirela Andronescu, Antony P. Fejes, Frank Hutter, Holger H. Hoos, Department of Computer Science Anne Condon. 2004. University of British Comlumbia A new algorithm for RNA secondary structure design. Vancouver, BC, Canada J. Mol. Biol. 336 :607-624. Robert M. Dirks, Milo Lin, Erik Winfree, Niles A. Pierce. 2004. California Institute of Technology Paradigms for computational nucleic acid design. Pasadena, CA, USA Nucleic Acids Research 32 :1392-1403. Rune B. Lyngsø, James J.W. Anderson, Elena Sizikova, Amarendra Badugu, Thomas Hyland, Jotun Hein. 2012. fRNAkenstein: Multiple traget inverse RNA folding. BMC Bioinformatics 13 :e260. Department of Statistics University of Oxford

  18. 1. One RNA sequence – one structure 2. Many RNA sequences – one structure 3. One RNA sequence – many structures 4. RNA switches

  19. The inverse folding algorithm searches for sequences that form a given RNA secondary structure under the minimum free energy criterion.

  20. N= 4 n N S < 3 n Criterion: Minimum free energy (mfe) Rules: _ ( _ ) _  { AU , CG , GC , GU , UA , UG } A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

  21. Every point in sequence space is equivalent Sequence space of binary sequences with chain length n = 5

  22. Structures are not equivalent in structure space Sketch of structure space

  23. many genotypes  one phenotype

  24. Evolution as a global phenomenon in genotype space

  25. 1. One RNA sequence – one structure 2. Many RNA sequences – one structure 3. One RNA sequence – many structures 4. RNA switches

  26. Computation of suboptimal secondary structures Michael Zuker. On finding all suboptimal foldings of an RNA molecule . Science 244 (1989), 48-52 Stefan Wuchty, Walter Fontana, Ivo L. Hofacker, Peter Schuster. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49 (1999), 145-165

  27. Interconversion of suboptimal structures

  28. ( ) ( ) ( ) ( ) ( ) ∑ ( ) − ε − ε = γ γ = / , with kT / base pair probability p X T T a S T g e Q T 0 k ij k ij k k k k ( ) ( ) ∑ = γ Q T T k k ∑ ∑ = − = − base pairing entropy ln with 1 s p p p p i ij ij ii ≠ ij , j j j i Base pair probability derived from the partition function Q ( T ) John S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA secondary structures. Biopolymers 29 :1105-1119, 1990.

  29. 3' 5' Example of a small RNA molecule with two low-lying suboptimal conformations which contribute substantially to the partition function UUGGAGUACACAACCUGUACACUCUUUC Example of a small RNA molecule: n=28

  30. U U G G A G U A C A C A A C C U G U A C A C U C U U U C C U C U U U C U C A C A U G U C C A A C A C A U G A G G U U U U U G G A G U A C A C A A C C U G U A C A C U C U U U C U C C U G G A U U A second suboptimal configuration C G A ∆ E U = 0.55 kcal / mole 0 →2 U A G C U A C C A A C C U first suboptimal configuration U U ∆ E C = 0.50 kcal / mole → U U G G A G U 0 1 C C U A A U G A C A C A U C A C 3' C U U U C U U U G G A G U C 5' C A minimum free energy A configuration U A G C  G = - 5.39 kcal / mole 0 U A C C A A C U U G G A G U A C A C A A C C U G U A C A C U C U U U C „Dot plot“ of the minimum free energy structure ( lower triangle ) and the partition function ( upper triangle ) of a small RNA molecule (n=28) with low energy suboptimal configurations

  31. Kinetic folding of RNA secondary structures Christoph Flamm, Walter Fontana, Ivo. L. Hofacker, Peter Schuster. 2000. RNA folding kinetics at elementary step resolution. RNA . 6 :325-338. Christoph Flamm, Ivo. L. Hofacker, Sebastian Maurer-Stroh, Peter F. Stadler, Martin Zehl. 2001. Design of multistable RNA molecules. RNA . 7 :254-265 Christoph Flamm, Ivo. L. Hofacker, Peter F. Stadler, Michael T. Wolfinger. 2002. Barrier trees of degenerate landscapes. Z.Phys.Chem . 216 :155-173. Michael T. Wolfinger, W. Andreas Svrcek-Seiler, Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler. 2004. Efficient computation of RNA folding dynamics. Z.Phys.A: Math.Gen . 37 :4731-4741.

  32. (h) S 5 (h) S 1 (h) S 2 (h) (h) 0 S 9 S 7 G  y g r e n (h) e S 6 e e r F Suboptimal conformations Search for local minima in conformation space S h Local minimum

  33. 0 G  y T g { k r 0 e Free energy G n e  e e r F S { S { Saddle point T { k S k S k "Barrier tree" "Reaction coordinate" Definition of a ‚barrier tree‘

  34. open chain A nucleic acid molecule folding in two dominant conformations

  35. Folding dynamics of the sequence GGCCCCUUUGGGGGCCAGACCCCUAAAAAGGGUC

  36. Interconversion of suboptimal structures

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend