wave motion around 2 d viscous shock profile
play

Wave motion around 2-D viscous shock profile Shih-Hsien Yu - PowerPoint PPT Presentation

C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Wave motion around 2-D viscous shock profile Shih-Hsien Yu Department of Mathematics, National University of Singapore 24th Annual Workshop on Differential Equations 24th, National Sun Yat-sen


  1. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Wave motion around 2-D viscous shock profile Shih-Hsien Yu Department of Mathematics, National University of Singapore 24th Annual Workshop on Differential Equations 24th, National Sun Yat-sen University, Kaoshiong January 22-23, 2016

  2. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Viscous shock layer stability An example: • A compressible Navier-Stokes equation in 2-D, � x ∈ R 2 . � � ρ t + ∇ · � u = 0 , ρ ( � x , t ) : density at ( � x , t ) , x , t ) ∈ R 2 : fluid velocity at ( � m t + ∇ · � � u ⊗ � m + ∇ p ( ρ ) − ∆ � � u ( � x , t ) u = 0 � � m ≡ ρ� u : momentum . p ( ρ ) = ρ γ : pressure , γ ∈ [ 1 , 5 / 3 ) • A viscous shock layer Ψ( x − st ) : A travelling wave soluton. � ρ ± � � ( ρ − , ρ + ) , ( � m − , � m + ) : end states of a shock wave lim x →±∞ Ψ( x ) = , � m ± s : Speed of the shock wave • Time-asymptotic stability of viscous shock layer To study ( ρ, � m ) t ( � x , t ) − Ψ( x − st ) as t → ∞ .

  3. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Physics and Solution of PDE Relationship in Classical PDE-Physics • Physics = ⇒ PDE (model of physics) • Solution of PDE = ⇒ Realization of Physics. Practically no relationship in Modern PDE-Physics Introduction of Real analysis = ⇒ Solutions of PDE(PDE not necessary physical) � = ⇒ Realization of Physics Viscous shock layer stablity in 2-D : A platform for exploring new tools for studying PDE

  4. Sound Wave C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Illustrations A Simplifed Hyperbolic Diagram Fluid velocity Fluid velocity Sound wave refmection Sound wave refmection Supersonic Region Subsonic Region Shock wave front

  5. Sound Wave C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Illustrations Realistic Diagram Fluid velocity Fluid velocity Sound wave refmection Sound wave refmection Supersonic Region Subsonic Region Shock wave front

  6. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Matheimatics-Physics natures in viscous conservation laws • When space-dimension=1, modern PDE is sufficient to show nonlinear time-asymptotic stability of a viscous shock profile. • When space-dimension ≥ 2 , perturbations in subsonic region progress after the light-cone in space-time domain within a light-cone , and the perturbations with a light-cone decay with a slower algebraic rate . This slowly decaying property causes modern PDE not sufficient for studying nonlinear coupling and nonlinear time-asymptotic stablity. ” of classical PDE shall remain and evolve with development of • “ Modern PDE . To construct the solutions of PDE with further physics natures of the solutions such as the pointwise in the space-time domain, etc.. The key ingredient should be a better realization in physics domain and in transform variables of “Green’s function”

  7. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Model nonlinear problem in 2-D � U t + UU x + V y = ∆ U V t + V x + U y = ∆ V � � U � � H ( x ) � 1 for x < 0 • shock wave = , H ( x ) ≡ V 0 − for x > 0 � U � � ϕ ( x ) � • = , ϕ ( x ) ≡ − tanh ( x / 2 ) shock profile V 0

  8. Sound Wave C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D An illustration A simplifed diagram for basic elements Fluid velocity Fluid velocity Sound wave refmection Sound wave refmection Supersonic Region Subsonic Region 2 U 0 2 U 2 t 0 t x y Shock wave front

  9. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Five basic problems PLUS auxiliary problem I . For two far fields   � � �� � � �� 0 ∂ y − ∂ x ∂ y      ∂ t + ∂ x − ∆ + U − ( x , y , t ) = 0  ∂ t − ∆ + U + ( x , y , t ) = 0    ∂ y 0  ∂ y ∂ x � � � � 1 0 1 0     U − ( x , y , 0 ) = δ ( x ) δ ( y ) U + ( x , y , 0 ) = δ ( x ) δ ( y )      0 1  0 1 II . For interactions between two ends of a shock wave  � � ��  � � �� ∂ x H ( x ) ∂ y H ( x ) ∂ x ∂ y     ∂ t − ∆ + G ( x , y , t ; x ∗ ) = 0 ∂ t − ∆ + G ( x , y , t ; x ∗ ) = 0      ∂ y ∂ x  ∂ y ∂ x � � � � 1 0 1 0     G ( x , y , 0 ; x ∗ ) = δ ( x − x ∗ ) δ ( y ) G ( x , y , 0 ; x ∗ ) = δ ( x − x ∗ ) δ ( y )      0 1  0 1 III . For interactions between shock profile and a shock wave e − ( x − x ∗ ) 2 + y 2 � − t ( ∂ t − ∆ + ϕ ( x ) ∂ x ) g ( x , y , t ; x ∗ ) = 0 g ( x , y , t ; x ∗ ) = cosh ( x ∗ / 2 ) 4 t 4 cosh ( x / 2 ) 4 π t g ( x , y , 0 ; x ∗ ) = δ ( x − x ∗ ) δ ( y ) IV . Auxilary problem  � � �� ϕ ( x ) ∂ x ∂ y    ∂ t − ∆ + G ( x , y , t ; x ∗ ) = 0   ∂ y ∂ x � � 1 0    G ( x , y , 0 ; x ∗ ) = δ ( x − x ∗ ) δ ( y )   0 1

  10. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Interactions at shock front • ∂ t and ∂ y are tangential to shock front • ∂ t and ∂ y can be replaced by transform variables s and η • ∂ x is normal to shock front and local � ∞ � e − i η y − st f ( x , y , t ) dtdy . • Laplace-Fourier transform: L [ f ]( x , i η, s ) ≡ R 0  � � �� � � 0 i η 1 0  s + η 2 + ∂ x − ∂ 2  x + L [ U − ] = δ ( x )    i η 0 0 1 I . � � �� � � − ∂ x i η 1 0  s + η 2 − ∂ 2  x + L [ U + ] = δ ( x )    i η ∂ x 0 1  � � �� � � ∂ x H ( x ) i η 1 0  s + η 2 − ∂ 2  x + L [ G ] = δ ( x − x ∗ )    i η ∂ x 0 1 II . � � �� � � H ( x ) ∂ x i η 1 0  s + η 2 − ∂ 2  x + L [ G ] = δ ( x − x ∗ )    i η ∂ x 0 1 Interaction by II ⇒ � � ��  H ( x ) 0   Both L [ G ] and − ∂ x + L [ G ] are continuous in x . 0 1   Both L [ G ] and ∂ x L [ G ] are continuous in x .

  11. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Interaction ⇒ Scattering data � � ∂ x H ( x ) �� � 1 � i η 0 s + η 2 − ∂ 2 x + L [ G ] = δ ( x − x ∗ ) i η ∂ x 0 1 2 2 � � T + kl ( i η, s ) e − λ + , k x ∗ + λ − , l x R + kl ( i η, s ) e − λ + , k x ∗ − λ + , l x L [ G ]( x , i η, s ; x ∗ ) = k , l = 1 k , l = 1 L [ U + ]( x − x ∗ , i η, s ) x=0 x >0 R ± kl : Reflective matrix * T ± : Transmissive matrix kl 2 2 � � R − kl ( i η, s ) e λ − , k x ∗ + λ − , l x T − kl ( i η, s ) e λ − , k x ∗ − λ + , l x L [ G ]( x , i η, s ; x ∗ ) = k , l = 1 k , l = 1 L [ U − ]( x − x ∗ , i η, s ) x=0 x <0 *

  12. C ONSERVATION LAWS I NTERACTION DYNAMICS IN MULTI -D Laplace wave numbers • Characteristic Polynomials for ODE. � s + η 2 − ξ 2 ∓ ξ � i η P ± ( ξ ; i η, s ) = det s + η 2 − ξ 2 + ξ i η • Eight basic “Laplace” wave numbers λ ± , j ( i η, s ) : P ± ( λ ± , j ; i η, s ) = 0 . ( λ ± , j is a complex wave number and P ± ( λ ; i η, s ) = 0 is an implicit dispersive relationship between the Laplace wave number and s complex frequency. )  { λ + , 1 , λ + , 2 , − λ + , 1 , − λ + , 2 } ,     { λ − , 1 , λ − , 2 , λ − , 3 , λ − , 4 } = 1 / 2 + { σ + , σ − , − σ + , − σ − } ,    �  � ( s + 1 / 4 ) − 1 / 2 ) 2 + η 2 , λ + , 1 = ( �   � ( s + 1 / 4 ) + 1 / 2 ) 2 + η 2 ,  λ + , 2 = (     � ( 1 / 4 + s + η 2 ± i η ) .  σ ± = � • Singular wave number: Λ ≡ λ + , 1 − s + 1 / 4 + 1 / 2 . • Four “Laplace” wave trains. ( In contrast to wave train e − i κ x + i ω ( κ ) t ) � e − λ + , 1 ( i η, s ) x , e − λ + , 2 ( i η, s ) x for x > 0 , e λ − , 1 ( i η, s ) x , e λ − , 2 ( i η, s ) x for x < 0 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend